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Sex Differences in Heat Shock Protein 72 Expression and Inflammatory Response to 

Acute Exercise in the Heat. 

 

by 
 
 
 

Trevor L. Gillum 
 

B.S., Health and Exercise Science, University of Oklahoma, 2004 
 

M.S., Health and Human Performance, University of Montana, 2006 
 

Ph.D., Physical Education, Sports, and Exercise Science,  
 

University of New Mexico, 2010 
 
 

ABSTRACT 
 
 

This study evaluated possible sex differences in intracellular heat shock protein 

72 (Hsp72), intracellular cytokines, and extracellular Hsp72 (eHsp72) before and after 

exercise in the heat. Nine non-heat acclimated women (W) (age 23 ± 3, BF 21 ± 2%, 

VO2max 58 ± 5 ml/kgFFM/min) and nine non-heat acclimated men (M) (age 25 ± 5, BF 12 

± 5%, VO2max 60 ± 7 ml/kgFFM/min) completed 2 treadmill bouts at 60% VO2max for 60 

min in a 42°C, 20% RH environment.  The W had normal menstrual cycles and were 

tested in counterbalanced order during follicular (fol) and luteal (lut) phases. M and W’s 

duplicate trials were separated by 12 ± 2 days.  Blood samples were drawn pre, 0, 1, and 

4 hrs post-exercise.  Mononucleated cells were analyzed for Hsp72, IL-1ra, IL-6, and 

TNF-α using flow cytometry.  eHsp72 was analyzed using ELISA.  In trial 1, Hsp72 

content increased in M by 37% 4 hrs post exercise (p<0.05), but did not change 

significantly in W at any time after exercise. When Hsp72 expression was normalized to 
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baseline, M expressed greater Hsp72 than W (p<0.05) after exercise.  Baseline Hsp72 

increased by 26% in M from trial 1 to trial 2 (p<0.05), but this effect did not occur in W. 

eHsp72 did not change after exercise, but there was a main effect for M having higher 

levels than W (p<0.05). While cytokines did not change during exercise, W consistently 

expressed less IL-1ra than M (p<0.05).  IL-6 and TNF-α were higher in the fol than lut 

phase at 4 hrs post exercise (p<0.05). Our findings suggest that unacclimated M and W 

differ in their expression of Hsp72 and eHsp72 after exercise in the heat.  M up-regulate 

Hsp72 after a single bout of exercise in the heat, which persisted for 12 days, suggesting 

an acquired cellular thermotolerance. The inhibition of Hsp72 expression in W after 

exercise could be due to a known effect of estrogen to stabilize the cell membrane or to 

its action as an anti-oxidant.  
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Chapter I 

Introduction 

The heat shock protein family (HSP) is a family of highly conserved proteins located in 

all cells.  HSPs demonstrate cytoprotective properties and are categorized according to 

their molecular weight. In a non-stressed cell, HSP are bound to heat shock factor (HSF) 

in the cytosol of the cell.  However, upon stressful stimuli, HSPs are released from HSF 

allowing HSP to bind to the damaged protein and permitting HSF to be translocated to 

the nucleus to begin transcription of heat shock 72 protein (Hsp72) (Ellis, 1996). Hsp72 

is the most inducible form of HSP (Kregel 2002). The induction of Hsp72 can arise from 

a variety of stressors that include oxidative stress (Adrie 2000), energy depletion 

(Sciandra 1983), ischemia reperfusion injuries (Marber 1995), or hyperthermia (Mizzen 

1988), among others. Stressors can result in the release of Hsp72 into the circulation 

typically from the splanchnic tissue (Febbraio 2002), but can also be released by other 

healthy (Lancaster 2005) and necrotic cells (Basu 2000). Extracellular Hsp72 (eHsp72) 

acts as a danger signal activating the immune system (Asea 2002), stimulating 

inflammation (Dybdahl 2002), and it is sometimes used as an indirect marker of heat 

stress (Ruell 2006). 

  

Hsp72 has been implicated in cellular protection against increases in core temperature 

with exercise in the heat. This increased protection is known as acquired thermotolerance 

and is defined as a single exposure to heat stress that leads to future protection. This 

process involves an increased basal expression of intracellular Hsp72 (Landry 1982, Li 

1982). When comparing heat tolerant to heat intolerant subjects, those who were heat 
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intolerant were found to have lower post exercise intracellular Hsp72 levels in 

lymphocytes than heat tolerant subjects. Heat intolerant subjects also demonstrated 

decreased heat shock factor-1 (HSF-1) in lymphocytes, the primary transcription factor 

for Hsp72, throughout exercise and during recovery (Moran 2006).  

  

There is increased gut permeability with exercise in the heat (Rowell 1973). Hsp72 may 

be responsible for a greater heat tolerance due to its role in reducing heat-induced gut 

permeability and in decreasing pro-inflammatory cytokines released from peripheral 

blood mononucleated cells (PBMC) (Snyder 1992). Specifically, due to the increased 

demand of blood flow to the skin and active skeletal muscles during exercise in the heat, 

blood is shunted away from the gut and blood flow to the splanchnic region receives less 

than 20% of its normal blood flow (Rowell 1973).  This decreased blood flow can cause 

ischemia and increased permeability of the gut (Rowell 1973). Increased gut permeability 

can allow lipopolysacharide (LPS) to enter the systemic circulation.  When LPS, a gram-

negative bacteria found in the intestinal lumen enters the systemic circulation, it forms a 

complex with lipopolysacharide binding protein (LBP) that binds to toll-like receptors 

(TLR) on immune competent cells (Schumann 1992).  The binding of this complex to its 

receptor activates NF- kb and the synthesis of pro-inflammatory cytokines in circulating 

leukocytes (Liu 2006).  Endotoxin release from the gut and its subsequent inflammatory 

cascade can lead to systemic inflammation and eventually multiple organ dysfunction 

syndrome (Chen 2005).  This is one of the main causes of heat stroke (Leon 2007, Lim 

2006). Hsp72 has been shown to decrease gut permeability by maintaining intestinal tight 

junctions (Dokladney 2006), suggesting a potential role of Hsp72 in decreasing intestinal 
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permeability.  This decrease in intestinal permeability may limit LPS release into the 

circulation. LPS tolerance, the diminished inflammatory response to repeated LPS 

exposure, has been linked to heat tolerance (Selkirk 2008). Trained subjects demonstrated 

greater intracellular Hsp72 in monocytes during heat stress than untrained subjects, and 

this corresponded with greater LPS tolerance and decreased monocyte apoptosis at 

exhaustion (Selkirk 2009). Furthermore, NF-kb activation occurred at higher core 

temperatures in trained subjects compared to untrained, suggesting an important role of 

Hsp72 in heat acclimation and cellular heat tolerance. (Selkirk 2008). Taken together, the 

increased expression of Hsp72 may serve a two-fold purpose: 1) Increased Hsp72 in the 

gut cells may decrease permeability by maintaining tight junctions and limit LPS 

movement through the gut.  This could increase tolerance to exercise in the heat. 2) 

Hsp72 may decrease pro-inflammatory cytokines released from PBMCs by inhibiting 

NF-kB activation and the subsequent release of pro-inflammatory cytokines. 

  

Serum Hsp72 (eHsp72) acts as a danger signal activating the immune system (Asea 

2002) and promotes the release of pro-inflammatory cytokines (Dybdahl 2002).  eHsp72 

can bind to TLR on antigen presenting cells stimulating the release of cytokines (Asea 

2008) and are also involved in the maturation of dendritic cells (Wang 2005). It is 

thought that the release of Hsp72 comes from the splanchnic tissue (Febbraio 2002) and 

not the exercising muscle.  However, the release of Hsp72 can come from healthy PBMC 

(Hunter-Lavin 2004) and B cells (Clayton 2005), and under situations of extreme stress, 

Hsp72 can also be released from necrotic cells (Basu 2000).  eHsp72 can serve as a 
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marker of heat illness as higher levels of eHsp72 were detected in runners with severe 

heat illness (Ruell 2006). 

  

 Scope of the Study 

Given that increased Hsp72 expression may confer protection against heat-induced 

perturbations, it may be significant that animal studies have shown a difference in the 

expression of Hsp72 between sexes. Under resting conditions, basal levels of Hsp70 in 

cardiac and renal tissue are higher in female compared to male rats (Voss 2003, Fekete 

2006).  However, in response to an assortment of stressors in a variety of tissues, male 

animals are able to express higher Hsp72 levels than females.  Specifically, cardiac tissue 

of male rats exhibited a two-fold higher increase in Hsp70 after one hour of running 

compared to their female counterparts (Paroo 2002a).   Whole body hyperthermia (43°C, 

20 min) resulted in male rats demonstrating a greater expression of cardiac Hsp72 after 

heating than females (Shinohara 2004).   In both studies, ovariectomized female rats 

displayed similar post stress Hsp70 levels as males.  Ovariectomized rats treated with 

estrogen showed decreased Hsp70 similar to intact females. Furthermore, both studies 

revealed that males, who induced a larger expression of cardiac Hsp70 than intact 

females, had better protection against an ischemic insult to the heart given after the 

stress.  It should be noted that the ischemic insult in the above experiments were 

performed on euthanized rats 24 hrs after exercise.  Also, the gastrocnemius muscle of 

male rats doubled the Hsp70 protein content and increased Hsp70 mRNA almost 9 fold 

after 60 min of running, while female rats did not increase either Hsp70 content or 

mRNA.  Furthermore, placebo treated ovariectomized animals revealed higher post 
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exercise Hsp70 content and mRNA levels than estrogen treated animals (Paroo 2002b).  

In response to acute tail shock, the pituitary gland, mesenteric lymph nodes, and liver of 

male rats had higher tissue content of Hsp72 levels post stress than females, while the 

adrenal glands, spleen, and heart did not express a sex specific response.  Moreover, there 

was no fluctuation in Hsp72 expression at rest or in response to stress in any of the 

tissues surveyed across the estrous cycle (Nickerson 2006).  Little is known about sex 

differences in Hsp72 expression in leukocytes after exposure to heat. 

  

Based upon the above results in animals, the presence or absence of estrogen may 

influence both the basal and the stress response of Hsp72.  Ovariectomized rats treated 

with estrogen had greater basal Hsp70 expression in the soleus and less Hsp70 expression 

after 90 min of downhill running compared to rats treated with progesterone or sham 

(Bombardier 2009).  Such results suggest that estrogen may be the primary sex-specific 

hormone responsible for the increased Hsp70 expression at rest and the blunted Hsp70 

response after exercise. An increased basal expression of Hsp70 may reduce the muscle’s 

stress-response to downhill running and thus limit the need for additional Hsp70 

production after the stress (McArdle 2004). 

  

The anti-oxidant actions of estrogen could be a factor involved in the blunted Hsp70 

response to stress. In skeletal muscle, estrogen has been shown to be a powerful 

antioxidant (Tiidus 1999) and a vital cell membrane stabilizer (Whiting 2000).  Estrogen 

can be directly incorporated into the cell membrane, and this can serve to fortify the cell 

(Kendall 2002).  Stabilizing the cell membrane has been shown to maintain calcium 
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homeostasis, which can decreases calpain activity (Belcastro 1998).  Calpian activation 

leads to neutrophil infiltration and oxidative stress (Stupka 2001). Thus, estrogen may 

protect the cells during exercise against oxidative damage (Tiidus 2001), potentially 

resulting in less tissue damage and a blunted Hsp70 inflammatory response.  

  

Taken together, the results from animal studies suggest two things regarding Hsp and 

estrogen:  1) Estrogen may be responsible for the increased basal expression of Hsp72 in 

certain tissues (cardiac, renal, skeletal muscle) and 2) because of the protective anti-

inflammatory effect of estrogen, the expression of Hsp72 may be reduced after exposure 

to a severe stress, such as unaccustomed or high-intensity exercise. In addition, estrogen 

could be protecting the cell from perturbations that would otherwise result in increased 

expression of Hsp72.  As a result, females may have a smaller induction of Hsp72 in 

response to a stress than males. 

  

Cellular Actions of Estrogens 

The increased basal expression of Hsp70 seen in females may be due to estrogen’s 

interaction with HSF-1, the key transcription factor for HSP.  Estrogen can initiate the 

Hsp72 cascade through HSF-1. Ex-vivo treatment with 17-b estradiol activated HSF-1 

and led to increased expression of Hsp72 in male and female cardiac myocytes from rats 

(Hamilton 2004, Knowlton 2001). It has been shown that Hsp90 forms a complex with 

HSF-1 and the intracellular estrogen receptor.  Treatment with estrogen disassociates 

HSF-1 from Hsp90 allowing it to activate the transcription of Hsp72 (Knowlton 2001).   
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The exact mechanism behind the relationship between estrogen and the blunted Hsp70 

response to stress is currently not known. However, it has been suggested that estrogen 

mediates its effect on Hsp70 through a nongenomic hormonal pathway.  Treating animals 

with tamoxifen, a known estrogen receptor agonist, showed the same blunted post 

exercise Hsp70 expression as ovariectomized animals treated with 17β and 17α estradiol 

(Paroo 2002b).  Since tamoxifen, 17β, and 17α estradiol all acted to suppress the post 

exercise expression of Hsp70, researchers suggest that these estrogen related compounds 

stabilized the cell membrane and attenuated oxidative stress (Wiseman 1993). As 

described above, stabilizing the sarcolemma protects the cell against exercise-induced 

damages and could result in a blunted Hsp72 expression. 

  

  

Purpose 

Currently, there are no human studies that have tested for possible sex differences in the 

stress response of Hsp72.  Therefore, we aim to compare the expression of intracellular 

Hsp72 and eHsp72 at rest and in response to exercise in the heat in men and women. 

Furthermore, we will examine if females in follicular and luteal phases of the menstrual 

cycle differ in their amount of Hsp72 expressed at rest and in response to exercise in the 

heat. Since Hsp72 mediates inflammatory cytokine production, we will also compare the 

responses of intracellular inflammatory markers (TNF-α, IL-1ra, and IL-6) between men 

and women, and between women in follicular (low estrogen) versus luteal (high estrogen) 

phases of their menstrual cycle. 
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Hypothesis 

In this study we will test the following hypotheses: 

 

1. Women will have higher basal levels of intracellular Hsp72 than men.   

Results from animal studies have shown that estrogen is associated with 

increased basal Hsp72.  For our studies we will obtain blood samples from 

men and women matched for age and fitness.  We will assess Hsp72 levels in 

PBMC. 

 

2. In response to a severe exercise stress (60 minutes of treadmill exercise at 

60% VO2peak in the heat), men will express greater amounts of Hsp72.   

In animal studies, estrogen has been shown to protect cells from stressors that 

are known to increase Hsp72 production.  Also, estrogen causes higher 

baseline levels of Hsp72, and thus possibly limits the need for increased 

production during a stressor.  Therefore, we predict that increases in Hsp72 

in PBMC after a severe exercise stress will be smaller in women than men. 

 

3. Intracellular Hsp72 levels will be higher at baseline in women during the 

luteal phase of their menstrual cycles, but in response to severe exercise the 

expression of Hsp72 will be blunted in luteal compared to the follicular phase. 
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Since estrogen is higher in the luteal phase, women will express higher 

baseline Hsp72 compared to the follicular phase, when estrogens are 

minimal.  After exercise, women in the luteal phase will have a smaller 

increase in intracellular HSP72 due to the protective effects of the estrogens. 

 

4. Pro-inflammatory cytokines (TNF-α) will be reduced in conditions where 

intracellular Hsp72 is elevated.   

Since men have a greater Hsp72 response to exercise, they will express less 

TNF-α and IL-6 than women after exercise.  Also, since women in the 

follicular phase have a greater Hsp72 response to exercise they also will have 

a greater inflammatory response compared to during the luteal phase.  

 
 

5.   There will be no difference between groups in eHsp72. eHsp72 is released 

with exercise, but this process does not appear to be mediated by estrogen.   

eHsp72 has been shown to be released from the liver with exercise.  There is no 

animal or cell data that has examined how eHsp72 differs betweens sexes.  

Further, more eHsp72 is released with heat illness.  There is no research to 

suggest that women are more inclined to experience heat illness symptoms than 

men, therefore we expect no difference in eHsp72 between sexes. 

 

To confirm the above hypotheses, healthy men and regularly menstruating women will 

perform two bouts of treadmill running in a hot environment (42°C, 30% RH).  All 

subjects will be un-acclimated to the heat and data collection will occur in the fall and 
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winter months.  The men and women will be matched for age, fitness level, and will 

exercise at a similar relative exercise intensity (60% VO2peak) for 60 minutes.  Women 

will exercise during their follicular and luteal phases, and the menstrual phase order will 

be counterbalanced.  Men will exercise on two occasions separated by two weeks.    

Venous blood samples will be obtained at rest before exercise, immediately post exercise, 

1, and 4 hrs after exercise.  Hsp72 and inflammatory cytokines will be determined from 

PBMC cells by flow cytometry and extracellular Hsp72 will be determined by ELISA 

kits. 

  

Limitations 

The vast majority of studies that have sought to examine differences in Hsp72 expression 

between sexes have quantified Hsp72 in tissues (animals) or with muscle biopsies 

(humans).  In this study we will quantify Hsp72 expression in PBMCs and in the plasma.  

Therefore, an assumption of our study is that the Hsp72 expressed in circulating 

lymphocytes gives us an accurate representation of changes that are occurring in other 

tissues of the body. 

  

Our subjects will be tested during the time of year when we assume they are not heat 

acclimated.  Once acclimated, cellular levels of Hsp72 may be up-regulated and the 

differences in Hsp72 between men and women, or between follicular and luteal phase, 

could be lost. 
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We are testing college age, healthy and relatively fit men and women.   Less fit 

individuals may have a different Hsp72 response: such as lower basal levels of Hsp72 

and a greater stress response (Gjovaag 2006). 

 

We are examining the stress response to exercise in the heat.  Although there is evidence 

of carry-over for the protective function of Hsp72 to other forms of stress, our sex 

difference may only apply to this specific form of stress. 

 

Significance 

If females have a blunted increase in Hsp72 during exercise and heat stress, they may be 

more susceptible to cellular injury.  Specifically, a decreased synthesis and release of 

Hsp72 might increase susceptibility to heat or impair their ability to become heat 

acclimated. Alternatively, sex differences in the Hsp72 response to stress may highlight a 

novel method of acquired thermotolerance if Hsp72 is not needed to protect cells from 

heat-induced perturbations. 

  

Definitions 

Luteal phase testing: 19-22 days after the onset of bleeding for a normal 28 day cycle 

(Timmons 2005) with values >500 pmol/L  and progesterone values > 4 nmol/L. 

 

Follicular phase testing:  3-8 days after the onset of bleeding for a normal 28 day cycle 

(Timmons 2005). Estrogen values between 100-500 pmol/L and progesterone values 

between 1-4 nmol/L. 
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Core temperature:  internal temperature measured rectally with the thermistor placed 8-

10 cm past the anal sphincter.  Rectal temperature was used because subjects were given 

water during exercise.  If core temperature was measured in the esophagus, then 

consuming water would alter the temperature being recorded. 

 

Peripheral blood Mononucleated cell (PBMC):  Blood cells with a round shaped 

nucleus.  These include lymphocytes, monocytes, macrophages, and granulocytes. 

 

Pro-inflammatory cytokines:  Tumor necrosis factor- a  (TNF-a) was measured in PBMC 

before and after exercise.   

 

Anti-inflammatory cytokines: interleukin -1 receptor antagonist (IL-1ra) and interleukin- 

6 (IL-6)  were measured in PBMC before and after exercise.   

 

Hydration:  Urine assessments of hydration will occur prior to each exercise test.  

Subjects will be considered hydrated enough to begin the test if their urine osmolality is 

below 800 mOsm/kg. 
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A Review: Sex Differences in Immune Function After Aerobic Exercise 

 

Abstract 

When menstrual phase and oral contraceptives are controlled for, males and females 

display marked differences in immune response to an exercise stress. In highly 

controlled research studies, sex differences in immune cell changes, cytokine 

alterations, along with morbidity and mortality after inoculation are apparent.  

Exercise has been hypothesized to serve as a model of various clinical stresses by 

inducing similar hormonal and immunological alterations. Thus, a greater 

understanding of sex differences in post exercise non-specific immune function may 

provide insight into more effective clinical approaches and treatments.  This paper 

reviews the recent evidence supporting sex differences in post exercise immune 

response and highlights the need for greater control when comparing the post 

exercise immune response between sexes. 

 

Introduction: exercise as a model to assess immune function 

Exercise modulates the non-specific (innate) (52) and specific (acquired or adaptive) 

(12) arms of the immune system with an intensity dependent response.  Moderate 

bouts of exercise have been shown to enhance immunity (51).  However, intense 

exercise depresses the immune system (52, 8).  More specifically, during moderate 

and intense bouts of exercise there are transient increases in circulating pro- and anti- 

inflammatory cytokine levels (55), concentration of lymphocytes and lymphocyte 
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sub-sets (46), and macrophage activity (22). Recently, researchers (75, 76, 9, 53) have 

suggested there are sex differences in the immune response to moderate and intense 

exercise. 

 

Exercise has been hypothesized to serve as a model for certain clinical stresses. In a 

review article, Dr. BK Pederson wrote:  

“Physical exercise can be regarded as a prototype of physical stress. Many 

clinical physical stressors (e.g. surgery, trauma, burn, sepsis) induce a pattern 

of hormonal and immunological responses that have similarities to that of 

exercise (60).”  

 

Clinical physical injury, similar to exercise injury, displays marked sex differences 

(4). For example, females have higher levels of mortality than males in response to 

burns of similar size (31). Females have a lower incidence of multiple organ 

dysfunction syndrome (MODS) and sepsis in response to shock compared to males 

(17). It is thought that the disparity in sex outcomes results from interactions of sex 

hormones with various aspects of the immune system. Since exercise induces similar 

immune response, it may provide a useful model to study sex differences in immune 

response to clinical stressors.  However, to understand this relationship, studies that 

control for menstrual phase, oral contraceptive (OC) use, and fitness levels between 

men and women are needed. The focus of this review will be to discuss what is 

currently known about sex differences in non-specific immune responses to exercise. 
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This review will consist of both animal and human studies that have examined the 

post exercise immune response.  

 

Sex Difference in Immune Function in Non-Exercising Conditions 

Several aspects of immunity have marked sex differences in non-exercising 

conditions. T cells, macrophages, and monocytes possess estrogen receptors (4) with 

two different subtypes, ERα and ERβ (61). ERα is mainly found in the uterus and 

mammary glands, while ERβ prevails in the central nervous, cardiovascular, and 

immune systems (32). Through these receptors, estrogen led to greater survival 

against herpes simplex virus 1 (HSV-1) in inoculated rats (9).  In addition, in vitro 

stimulation of lymphocytes with phytohemagglutinin, a toxin used to elicit cytokine 

production from immune competent cells, found that females produce more Th2 (IL-

4, IL-10) cytokines than males (29).  Th2 cytokines are responsible for secretion of 

antibodies and this may play a role in the higher incidence of autoimmune diseases in 

women (85). Furthermore, females have a higher percentage of T lymphocytes within 

the total lymphocyte pool (5), and have more active circulating polymorphonuclear 

leukocytes (neutrophils) and macrophages (64, 65).  Overall, physiologic levels of 

estrogen stimulate humoral and cell-mediated immune responses, but large increases 

in estrogen (either from pregnancy or supraphysiologic doses) can suppress cell-

mediated immunity (54).  Taken together, results imply that females of reproductive 

age have a more active immune system than age matched males.  This could account 

for females having a lower incidence of, and mortality rates from, certain types of 

infection (bacteria septlcemai, pneumonia/influenza, bacterial meningitis) (28) and 
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lower rates of atherosclerosis (79).  Similarly, this could also explain the increased 

incidence of autoimmune diseases.  

 

Sex Difference in Immune Response to Exercise:  Inoculation Studies 

Inoculating animals with viruses has previously been used as a model to study upper 

respiratory infections in animals by inducing illness (33). Inoculation purposefully 

infects the animal by transferring the causative agent into the animal. In this manner, 

whole body responses can be measured after inducing a specific illness. With this 

methodology, female mice experienced lower mortality after intranasal inoculation 

with herpes simplex virus 1 (HSV-1) at rest and after exercise than males.  HSV-1 

was delivered after the third bout of running to exhaustion or after 3 non-exercising 

control sessions.  Though exercise resulted in greater morbidity (illness symptoms) 

than control, both sexes experienced the same degree of morbidity. Despite males and 

females having a similar rate of infection by HSV-1 after inoculation, fewer females 

died (9).  Similarly, female mice that exercised at a moderate intensity had a greater 

macrophage resistance to HSV-1 than their male counterparts (8).  However, both 

males and females experienced suppressed macrophage function after exhaustive 

exercise, and experienced this suppression to a similar degree.  Thus, it is plausible 

that the decreased mortality after HSV-1 inoculation seen in female mice may be due 

to increased macrophage function.  Since more females survived HSV-1 inoculation 

than males, the presence of estrogen could be an important determinant of this 

response.  However, ovariectomized mice supplemented with estrogen experienced 

higher mortality than intact female mice after HSV-1 inoculation (7).  Despite the 
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better protection of intact mice, there was only a trend (p=0.1) toward intact females 

having greater macrophage resistance than the estrogen treated ovariectomized group.  

Therefore, the authors suggested that antiviral macrophage resistance is not 

responsible for the lower mortality (7). Since estrogen supplementation did not 

restore the protective effects of intact mice, other female hormones could be 

responsible for this added fortification of female mice.  Taken together, animal 

research with HSV-1 inoculation demonstrates that male and female mice are equally 

susceptible to an infection at rest or after exhaustive exercise.  However, more 

females survive. The greater macrophage activity may be responsible for this effect, 

but future studies should incorporate other immune parameters. The mechanism 

behind greater female survival with HSV-1 may be related to other ovarian hormones 

besides estrogen.  

 

Sex Difference in the Cytokine Response to Exercise 

The local response to a tissue injury involves the release of cytokines.  Cytokines are 

released from the site of inflammation.  The local response of cytokine release is 

supplemented by the release of cytokines from the liver, termed the acute phase 

response. The acute phase cytokines are TNF-α, IL-1β, and IL-6. These pro-

inflammatory cytokines cause the movement of lymphocytes, neutrophils, and 

monocytes to the injured site.  These leukocytes ultimately infiltrate the damaged 

muscle and serve to repair the tissue (2). Initially, exercise leads to increased release 

of pro-inflammatory cytokines (TNF-α, IL-1β,) and this is counteracted quickly by 
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the release of cytokine inhibitors (IL-1ra, TNF receptors) and anti-inflammatory 

cytokines (IL-10), which limit the inflammatory response of exercise (60).   

With chronic exercise and training, there is a decrease in cytokine production during 

an acute bout of exercise (69).  Decreased cytokine release may contribute to 

immunosuppression and lead to a greater risk of bacteria and infection that is often 

evident in endurance-trained athletes (51).  However, this decrease in inflammation 

could be a key link between exercise and health through a possible reduction in the 

risk of chronic disease.  

Generally, cytokines are released after prolonged exercise or exercise that causes 

muscle damage (10, 60).  The intensity and duration of exercise, along with fitness 

level, determines the cytokine profile (30).  Interestingly, exercise does not cause an 

alteration in pro-inflammatory gene expression in peripheral blood mononucleated 

cells (PBMC) (81), suggesting that this is not a primary site for cytokine release. 

Recently, researchers demonstrated IL-6 is released from the exercising muscle (38, 

67). IL-6 can increase 100 fold after exercise making it the most responsive cytokine 

to exercise and perhaps underscoring its biological significance. IL-6 has been shown 

to regulate metabolic factors such as glucose uptake and fatty acid oxidation (59).  

Recently, IL-6 released from the exercising muscle has been shown to have anti-

inflammatory properties through its up-regulation of anti-inflammatory cytokines IL-

1ra (56) and IL-10 (55), in addition to inhibiting TNF-α release (66).  For a detailed 

review of IL-6 and exercise, see Febbraio, 2005 (21).  

Sex differences in the regulation of cytokines have been previously demonstrated in 

non-exercising conditions. After lymphocytes were stimulated with 
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phytohemaglutinin, a toxin used to elicit cytokine production from immune 

competent cells, a  greater Th1 profile, characterized by increased release of IFN-γ 

and IL-2, was shown in lymphocytes drawn from men compared to women. Women 

possessed a greater Th2 cytokine release (IL-4, IL-10) than men, but there were no 

differences across the menstrual cycle (29). Th2 cytokines are responsible for 

humoral mediated immunity and lead to increased secretion of antibodies. Similarly, 

IL-1 release from mononucleated cells is lower in males and is menstrual phase 

dependent in females(44). More specifically, the balance of the IL-1 family (IL-1-α, 

IL-β - agonist, IL-1ra – antagonist) is menstrual phase dependent.  The ratio of 

agonist (IL-1-α, IL-β) to antagonist (IL-1ra) was equal during the follicular stage, but 

the agonist was ~45% higher in the luteal phase.   Thus, the activity of IL-1α/β was 

greater in the luteal phase.  IL-1β may influence reproductive functions like 

endometrial development and preparing the birth canal for parturition.  IL-1β has also 

been shown to block leutenizing hormone and ovulation in rats (28). After trauma-

hemorrhage injury, ovariectomized mice had decreased cytokine expression (IL-2, 

IL-3, and IFN-γ) from macrophages compared to ovariectomized mice treated with 

17-β estradiol.  The estradiol treated group maintained cytokine release after injury 

and this suggests that estrogen is capable of preventing immunosuppression that had 

been previously demonstrated with male mice and enhancing survival (41).  

Currently, there are a handful of studies that have compared the cytokine response to 

exercise between sexes.  There was no difference reported in serum IL-10, IL-1ra, IL-

6, and IL-8 between men and women immediately and 1.5 hours after completing a 

marathon (50). The in-vitro production of IL-1, IFN-γ, and IL-4 from cultured whole 
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blood showed no differences between genders in response to continuous incremental 

cycling at 55%, 70%, and 85% VO2peak (49). Similarly, 90 minutes of cycling at 65% 

VO2max resulted in no difference in serum IL-6 levels between men and women (75).  

There was however, a trend (p=0.06) of increased IL-6 in women who took OC and 

those who were not taking OC and exercising in the follicular phase (75). The change 

in IL-6 values could be due to altered carbohydrate (CHO) oxidation rates.  It was 

shown that whole body CHO oxidation during 50 min of cycling at 70-90% of lactate 

threshold is higher in the follicular phase (89).  This higher rate of CHO oxidation 

could have lead to a greater depletion of CHO.  In response to low CHO availability, 

IL-6 production will increase (38). In contrast, Edwards found that 60 minutes after a 

maximal cycling test, female IL-6 values were greater than men (18), although there 

were no differences between genders at baseline, immediately, or 30 minutes post 

exercise.  At 60 minutes post exercise, the male IL-6 values decreased towards 

baseline while the female values continued to rise. The exercise-induced IL-6 

response is directly linked to the duration and intensity of exercise, along with the 

number of muscle fibers recruited (increased release) and the fitness level of subjects 

(decreased response) (57). Thus, methodological differences could account for the 

current disparity in the literature regarding IL-6. 

 

At the transcriptional level, Northoff et al found a gender and menstrual phase 

difference in mRNA inflammatory gene expression in response to a 60 min run at 

93% of the individual’s anaerobic threshold (53).  Women in the luteal phase 

demonstrated a greater condition of pro-inflammation than women in the follicular 
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phase or men immediately after exercise.  This pro-inflammatory state was 

characterized by an increase in inflammatory genes (interferon-γ, IL-12 receptor β1, 

and prostaglandin D2 receptor) and a decrease in anti-inflammatory genes (IL-6, 

IL1R2, IL1-ra) in PBMC. The authors state that the increase pro-inflammatory 

condition in the luteal phase could be a “mechanism designed to end a very early 

pregnancy in case of major external stress input. After all, human females get a new 

chance to conceive in the next month and nature may prefer to destabilize a 

pregnancy under influence of stress rather than carry it on under high risk.”  

Furthermore, women in the luteal phase regulated over 200 genes (129 genes up-

regulated, 143 genes down-regulated), while women in the follicular phase regulated 

80 genes (48/32) and men regulated only 63 genes (34/29). Interestingly, post 

exercise IL-6 mRNA was down- regulated in the luteal phase, while up-regulated in 

the follicular phase after exercise.  Future studies that control for menstrual cycle are 

needed to assess the expression of the specific proteins before any conclusions can be 

drawn.   

 

Thus, in limited research on aerobic exercise, it appears the overall cytokine response 

to exercise is not markedly different between sexes.  However, few studies controlled 

for either menstrual phase or oral contraception.  Some work has demonstrated a 

greater up-regulation of inflammation (129 genes up-regulated, 143 genes down-

regulated) in the luteal phase at the transcriptional level after exercise (53).  Potential 

sex differences in IL-6 may exist after maximal exercise (18) and further research is 
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needed to confirm the IL-6 response at longer time points after exercise while 

controlling for menstrual phase and oral contraceptive use.   

 

Sex Differences in Leukocyte Response to Exercise 

Moderate aerobic exercise results in a transient increase in both innate (monocytes, 

macrophages, neutrophils, NK cells) and specific (B and T lymphocytes) cells of the 

immune system. The effector cells of the innate immune system are monocytes, 

macrophages, neutrophils, and a subset of lymphocytes called natural killer (NK) 

cells.  These cells represent the first line of defense against infections by neutralizing 

microbes or pathogens that have entered the circulation through phagocytosis 

(monocytes, macrophages, neutrophils) or by directly lysing the pathogen (NK cells).  

T cells recognize specific antigens presented to them to create memory cells, and B 

cells secrete antibodies to kill extracelluar pathogens. B cells are fundamental for 

eradicating bacterial infections. The number of total leukocytes, lymphocytes, 

granulocytes (neutrophils), and monocytes increase in a biphasic response (46). The 

immediate increase of leukocytes is characterized by increases in lymphocytes, 

monocytes, macrophages, and neutrophils, and is then followed by a delayed response 

of additional neutrophils 2 hours post exercise (46, 87).  

 

Both the duration and intensity of exercise combine to determine the specific increase 

in leukocytes with exercise. Exercising for up to 30 minutes leads to increased 

lymphocytes (CD4+T cells, CD8+T cells, CD19+ B cells, CD16+ NK cells, CD56+ 

NK cells), which return to baseline values within 10-30 minutes after cessation of 
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exercise (46). Longer duration exercise requires longer time periods for leukocytes to 

return to baseline. Specifically, CD8+ lymphocytes increase more with exercise than 

CD4+ cells (60). CD8+ lymphocytes can directly kill foreign or infected cells, 

whereas CD4+ are helper cells that mainly produce cytokines to magnify the immune 

response.  Also, memory lymphocytes are recruited into the circulation more so than 

naïve lymphocytes (27).  Memory cells are more likely than naïve cells to relocate to 

non-lymphoid tissues or possible locations of infection, like the vasculature of the 

skin, lung, liver, and gut. 

 

The increases in epinephrine release and cardiac output associated with exercise are 

thought to contribute to the exercise-induced leukocytosis through de-margination 

from vascular pools and immune organs (26, 24, 80). The delayed increase in 

neutrophils may be mediated by an increase in Granulocyte colony-stimulating factor 

(G-CSF) more so than epinephrine or cardiac output (87).  Epinephrine release in 

response to submaximal exercise has been shown to be sex dependent, with males 

demonstrating a greater release compared to mid-follicular females (11, 15, 34). 

However, an overall greater expression of β2-adrenergic receptors on lymphocyte 

have been found in women compared to men (84, 43). The majority of previous 

research suggests there are no post exercise sex differences in leukocytes (49, 1), 

lymphocytes (49, 1), natural killer cells (6, 48) monocytes (1) or neutrophils (1). 

However, the above studies did not control for menstrual cycle phase, oral 

contraceptives, or matching male and female subjects for activity or fitness level. 
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In one of the few studies to examine immune cell changes that controlled for 

menstrual phase, oral contraception, and fitness, Timmons et al showed that women 

taking OC had a greater post exercise increase in lymphocytes and neutrophils 

compared to men and non-OC users after 90 min of cycling at 65% of VO2max (75). 

Women taking OC experienced cycle specific (follicular and luteal phases that 

corresponded to triphasic OC) exercise induced changes in total leukocytes, 

neutrophils, monocytes, and lymphocytes, whereas non OC users had no fluctuations 

across the menstrual cycle.  The increase in immune cells after exercise were greater 

in OC users on days taking the pill, and these increases were always greater than the 

post-exercise changes seen in men. There were no differences in total leukocytes, 

neutrophils, and monocytes between men and regularly menstruating women not 

taking OC. However, non-OC users had a greater post exercise increase in 

lymphocytes than men. Taken together, this study demonstrated immune cell changes 

between men and women that are specific to OC use.  There was a greater increase in 

immune cells after exercise in the high progesterone phase of women taking OC than 

men and non OC using women.  Also, non OC using women had more lymphocytes 

circulating post exercise than men. 

 

Since there were no changes in lymphocyte number across the menstrual cycle in 

non-OC users, sex hormones probably do not account for sex differences. While the 

authors corrected for exercise-induced changes in plasma volume, there was no 

mention of correcting for contraceptive induced changes in plasma volume.  Previous 

research has found an increase in plasma volume in women taking OC (83).  A 
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difference in plasma volume between woman taking OC and those who did not could 

influence the results not only of the previous study, but also much of the preceding 

literature.   

 

Thus, with moderate to intense aerobic exercise, the circulating leukocyte populations 

change dramatically.  However, the majority of research suggests that there is no 

difference between sexes in the leukocyte response to aerobic exercise.  Currently, 

Timmons et al is the only study to control for OC use, and the only study to show a 

difference between men, OC, and non OC users.  Future research is warranted. 

 

Sex Differences in Natural Killer Cell Response to Exercise 

Natural Killer (NK) cells are a subset of lymphocytes produced in the bone marrow 

and are part of the innate immune system.  NK cells kill virally infected cells or 

tumor cells through direct cytolytic mechanisms, without activation. NK cells account 

for 10-15% of circulating blood mononuclear cells.  During exercise, NK cells are 

transiently increased by 186- 344% of initial resting value, following both maximal 

and sub-maximal bouts (63).  NK cells are the most responsive leukocyte to exercise 

due to their catecholamine sensitivity (25). The magnitude of increase in NK cells is 

more responsive to the intensity than duration of exercise.  Generally, NK cell 

number and activity will decline only in intense exercise lasting at least 1 hour (58).  

At rest, men have a higher NK cell activity despite no difference in NK cell numbers 

than regularly menstruating women or women using OC.  Women using OC had the 

lowest NK cell activity (88). Furthermore, IL-1 release from monocytes, an activator 
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of NK cell activity, has been shown to be both sex and menstrual phase dependent 

(44).  

 

Previous research supports the notion that there are no sex differences in NK cell 

number or activity in response to incremental or continuous exercise (6, 48).  

However, neither study controlled for menstrual phase or OC use. In contrast, 

adolescent girls not taking OC and tested in the mid-follicular phase had a greater 

increase in NK cell count than adolescent boys during (77) and after (78) cycling 

exercise for 60 min at 70% VO2.  Also, NK cell subset expression was significantly 

different between sexes (77). NK cells can be divided into 2 unique groups: CD56dim, 

representing 90% of the circulating NK cells, and CD56bright cells that are more 

responsible for inflammation (13).  The ratio of CD56dim: CD56bright have been shown 

to play a role in reproduction as the concentration of NK cells in the uterine mucosa 

changes across the menstrual cycle and with pregnancy (40).  For an in depth review 

of NK cell subset changes with exercise see Timmons, 2008 (74). NK cell activity 

was not assessed in either study.  Since results from Yovel 2001 (88) suggest there is 

both a sex and OC effect on NK cell activity at rest, future controlled studies are 

needed to quantify NK cell activity during and after exercise in an adult population.  

 

Sex Differences in Neutrophil Response to Exercise 

Neutrophils are a large subset of granulocytes, comprising ~90% of all granulocytes. 

Granulocytes are characterized by the granules in their cytoplasm and consist also of 

basophils and eosinophils.   Neutrophils are members of the innate immune system.  
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They are part of the acute inflammatory response and are the first cells recruited from 

the blood to the site of injury or infection (5).  Neutrophils attack microbes that have 

entered the circulation by phagocytosing the microbe or releasing oxidative bursts to 

destroy the pathogen.  Neutrophils also produce cytokines to recruit more neutrophils 

and other immune cells to the site of injury and enhance both specific and innate 

immunity.  Granulocytes are higher in the luteal phase compared to the follicular 

phase (19) and have been shown to increase during pregnancy (82).  There is 

evidence that with pregnancy there is a decrease in cell-mediated immunity (36).  As 

a compensation mechanism, the pregnant women increase activity of the innate 

system, most notably granulocytes. 

  

Acute exercise causes a mild inflammatory response to repair damaged tissue, which 

is characterized first by neutrophil infiltration, followed by macrophage infiltration 

several hours later (23). While the current data on sex differences in neutrophil 

infiltration after exercise are equivocal (45, 70, 71), generally females rats have a 

blunted post exercise inflammatory response that leads to less neutrophils infiltrating 

skeletal muscles and less muscle soreness (70, 72).  From animal studies, it seems 

that estrogen is limiting neutrophil infiltration by acting as a cell membrane stabilizer 

and antioxidant.  However, data from human studies are less compelling. For a review 

of sex differences in neutrophil infiltration see Point – Counterpoint, Tiidus & Hubal 

2009 (35, 73).   

 

Higher numbers of circulating neutrophils were observed both at rest and after 90 min 
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of cycle ergometry in women taking OC compared to men and non-users.  

Furthermore, the greatest increase in neutrophils after exercise in OC users was seen 

in the luteal phase when estradiol levels were lowest (75). Since estrogen has been 

shown to inhibit the inflammatory response to exercise (70, 72), it makes sense that 

neutrophils would be highest when estrogen was lowest.  Previously, data from males 

suggested that increased IL-6 levels during exercise lead to increases in cortisol, 

which ultimately are responsible for exercise neutrophilia (68).  However, data from 

sex comparison studies suggest there is no correlation between IL-6 levels and 

cortisol during exercise (75, 18). OC users had higher cortisol and neutrophil levels 

compared to men and non-users, but equivalent resting and post exercise levels of IL-

6 (75).  This could potentially highlight differences in regulation of anti-inflammatory 

mediators between men and women and future research should be conducted to 

understand this response.  

 

Potential Mechanisms of Action for Sex Differences in Immune Response to Exercise 

Given the post-exercise sex differences in immune function, estrogen may be 

responsible for this disparity.  However, results from a few well-controlled studies 

suggest other physiologic variables account for the sex discrepancies. The sex 

differences in IL-6 during maximal exercise could potentially be mediated by a 

difference in the amount of adipose tissue (42). Mohamed-Ali showed that adipose 

tissue released IL-6 (47).  Furthermore, increases in catecholamines during exercise 

are related to IL-6 release from adipose tissue (39).  Thus, the greater IL-6 response 

in women could be due to their greater fat content (18).   
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The disparity in post-exercise leukocyte and neutrophil responses between women 

who took OC, non-OC users, and men could be related to differences in growth 

hormone and cortisol levels. Both growth hormone (3) and cortisol levels (75) are 

higher in women taking OC.  Furthermore, both growth hormone (37) and cortisol 

(14) have been shown to increase circulating neutrophil levels.  However, in 

Timmons et al (75), cortisol levels did not differ between menstrual cycle phases, 

only between groups. Thus, cortisol alone could not be responsible for the increased 

post exercise immune cell response of the OC users.  Exercise induced leukocytosis 

seen in both men and women appear to be associated with the increased circulating 

catecholamines (60). Thus, as noted by Timmons et al, the greater increase in 

lymphocytes in women during exercise may be due to their greater density of 

lymphocyte β2-adrenergic receptors. (84, 43). Furthermore, the number of β2-

adrenergic receptors on lymphocytes decreases over 10 wks of aerobic training (62).  

Thus differences in training also may be responsible for some of the sex differences 

reported in studies that did not control for fitness. 

 

Intact female mice had lower mortality rates to post-exercise HSV-1 inoculation 

compared to males or ovariectomized females (8, 7).  Yet, when estrogen was 

replaced after ovariectomy, ovariectomized females were still more susceptible than 

the intact group.  Therefore, the authors concluded that physiologic doses of estrogen 

(1µg/day) are not responsible for the enhanced immunity seen in intact female 

animals.  Further research is warranted to confirm this finding and to identify the 
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cause for the greater immune response of the female animals.  Similarly, 8 days of 

supplementing men with estradiol had no effect on resting or post exercise cortisol, 

IL-6, or neutrophil counts after 90 min of cycle ergometry at 60% of aerobic capacity 

(76). This study reinforces the suggestion that estrogen alone is not responsible for 

immune sex differences, and could potentially point to a difference in the expression 

of estrogen receptors (ER) on cells throughout the body.  Both males and females 

have ERα and ERβ in skeletal muscle, with ERα mRNA 180 fold greater than ERβ 

(86). Females exhibit greater ERα expression in the lungs than men (20), while ERβ 

mRNA is higher on adipocytes in women (16).  Taken together, these data suggests a 

sex difference not only in ER quantities, but also a site-specific preferential 

expression of ER isotypes.   

 

Future Research Considerations and Conclusions 

When menstrual phase and oral contraceptives are controlled, males and females 

display marked differences in immune response to exercise (Table 1). Sex differences 

in immune cell changes, cytokine alterations, along with morbidity and mortality are 

apparent after submaximal and maximal aerobic exercise stressors. The primary 

mechanism for many of the sex differences does not appear to involve the presence of 

estrogen.  Thus, future research should clarify which specific ovarian-related changes 

are responsible for these immune response differences and their specific actions.  By 

using exercise to model the stress responses to certain clinical traumas, this avenue of 

research may provide valuable insight into new approaches and sex-specific 

treatments.  
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Table 1. Gender differences in immune function in studies that controlled for 
menstrual phase and OC use.  
Author N size Exercise  Immune changes 

Timmons, 2005 12 women (6 OC 
users, 6 NOC users), 
12 men 

90 min cycling, 65 % 

VO2max 

38% > lymphocyte 
increase post 
exercise in NOC 
women compared to 
men. 

Northoff, 2008 9 women, 12 men 60 min treadmill run, 

93% AT 

>Pro-inflammatory 
gene expression in 
LP compared to men 
or FP. 

Brown, 2004 89 female mice, 86 
male mice. 

3 consecutive days 
of treadmill running 
after HSV-1 
inoculation until 
volitional fatigue. 

>morbidity for males 
(28%) compared to 
females (16%). 

Brown, 2006 36 female mice, 36 
male mice 
 

3 days of moderate 
(90 min) or 
exhaustive 
(volitional fatigue) 
treadmill running 
after HSV-1 
inoculation. 
 

>macrophage 
antiviral resistance in 
moderately exercised 
females compared to 
males. 
 

Gonzalez, 1998 9 women 80 min walking, 
32% VO2max in cold 
(-5°C) environment. 

41% decrease in IL1-
β after exercise in LP 
compared to FP.  No 
change in IL-6 or 
TNFα. 

Timmons, 2006a 
 
 

25 girls, 33 boys 
 
 

60 min cycling, 70% 
VO2max. 
 
 

>Leukocyte count at 
30 & 60 min post 
exercise in T5 boys 
compared to T4/5 
girls.  >NK cell 
response 
immediately post 
exercise in T4/5 girls 
compared to T3/4 
boys. 
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Table 1. (Cont.) 
Timmons, 2006b 
 
 
 
 
 

11 girls, 11 boys. 
 
 
 
 

60 min cycling, 70% 
VO2max. 
 
 
 
 
 

> Lymphocyte count 
in girls at 30 min 
(29%) and 60 min 
(23%) of exercise. 
CD56dim cells (105% 
) and  CD56dim 
expressed as 
proportions (67%) 
greater in girls.  
CD56bright cell counts 
82% greater in girls 
but not CD56bright 
proportions. 
 
 

Ferrandez, 1999 60 female, 60 male 
mice 

Swimming until 
exhaustion 

>chemotaxis index 
in females compared 
to age matched male 
mice 

 
OC – oral contraceptive user.  NOC non oral contraceptive user.  LP – Luteal Phase.  
FP- Follicular Phase.  T5 – Tanner stage 5.  T4/5 – Tanner stage 4 and 5. 
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This chapter is prepared according to the guidelines for the Journal of Applied 
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Abstract 
 
This study evaluated possible sex differences in intracellular heat shock protein 72 

(Hsp72), intracellular cytokines, and extracellular Hsp72 (eHsp72) before and after 

exercise in the heat. Nine non-heat acclimated women (W) (age 23 ± 3, BF 21 ± 2%, 

VO2max 58 ± 5 ml/kgFFM/min) and nine non-heat acclimated men (M) (age 25 ± 5, BF 12 

± 5%, VO2max 60 ± 7 ml/kgFFM/min) completed 2 treadmill bouts at 60% VO2max for 60 

min in a 42°C, 20% RH environment.  The W had normal menstrual cycles and were 

tested in counterbalanced order during follicular (fol) and luteal (lut) phases. M and W’s 

duplicate trials were separated by 12 ± 2 days.  Blood samples were drawn pre, 0, 1, and 

4 hrs post-exercise.  Mononucleated cells were analyzed for Hsp72, IL-1ra, IL-6, and 

TNF-α using flow cytometry.  eHsp72 was analyzed using ELISA.  In trial 1, Hsp72 

content increased in M by 37% 4 hrs post exercise (p<0.05), but did not change 

significantly in W at any time after exercise. When Hsp72 expression was normalized to 

baseline, M expressed greater Hsp72 than W (p<0.05) after exercise.  Baseline Hsp72 

increased by 26% in M from trial 1 to trial 2 (p<0.05), but this effect did not occur in W. 

eHsp72 did not change after exercise, but there was a main effect for M having higher 

levels than W (p<0.05). While cytokines did not change during exercise, W consistently 

expressed less IL-1ra than M (p<0.05).  IL-6 was higher in the fol than lut phase at 4 hrs 

post exercise (p<0.05). Our findings suggest that unacclimated M and W differ in their 

expression of Hsp72 and eHsp72 after exercise in the heat.  M up-regulate Hsp 72 after a 

single bout of exercise in the heat, which persisted for 12 days, suggesting an acquired 

cellular thermotolerance. The inhibition of Hsp72 expression in W after exercise could be 
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due to a known effect of estrogen to stabilize the cell membrane or to its action as an anti-

oxidant.  

Keywords: Heat shock protein, sex differences, thermoregulation, cytokines, immune 

function 
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Introduction 

The cellular stress response is characterized by increased expression of intracellular heat 

shock protein 72 (Hsp72).  The actions of Hsp72 serve to fortify the cell against 

perturbations by maintaining proper protein folding (13), inhibiting intracellular pro-

inflammatory cytokine synthesis (5, 34, 35, 45), and limiting cellular apoptosis (34).  The 

expression of Hsp72 increases during (34) and after (9) exercise in the heat, and Hsp72 

expression has been linked to heat tolerance (24).  After heat exposure, baseline Hsp72 

increases and cells are protected against normally lethal increases in core temperature 

(19, 20).   

 

Given that Hsp72 expression is up-regulated in response to stress, it is interesting that 

animal studies have shown a difference in the expression of Hsp72 between sexes. Under 

resting conditions, basal levels of Hsp70 in cardiac and renal tissue are higher in female 

compared to male rats (10, 41).  However, in response to running (28, 29) and 

hyperthermia (36), male animals were able to express higher Hsp72 than females in the 

gastrocnemius and cardiac tissue.  In the above studies, ovariectomized females treated 

with sham displayed similar post stress Hsp70 levels as males, while ovariectomized 

females treated with estrogen showed decreased Hsp70 similar to intact females.  An 

increased basal expression of Hsp70 may reduce the response to stress and thus limit the 

need for additional Hsp70 production after the stress (22). Little is known about sex 

differences in Hsp72 expression in PBMC after exposure to heat.  

 



www.manaraa.com

 
 

51 

Currently, there are no human studies that have tested for possible sex differences in the 

cellular stress response to exercise in the heat.  Therefore, our purpose was to compare 

the expression of Hsp72, circulating Hsp72 (eHsp72), and intracellular cytokines at rest 

and after exercise in the heat in men (M) and women (W). Furthermore, we examined if 

W in follicular (fol) and luteal (lut) phases of the menstrual cycle differ in their amount of 

Hsp72, eHsp72 and intracellular cytokines expressed at rest and in response to exercise in 

the heat.  

 

Materials and Methods 
 
Subjects 
Eighteen (9 men and 9 women) active, but untrained subjects completed two treadmill 

sessions in a hot, dry environment (42.3±1°C, 22.5 ±12% RH). M were matched with W 

for fitness and age (Table 1).  The W were followed for three months and demonstrated 

regular menstrual cycles.  They were not taking hormonal contraceptives.  W were tested 

in the fol (day 7±2) and lut (days 20±1) phases of their menstrual cycle. The same length 

of time elapsed between the 2 exercise trials (M: 12 ±4 days, W: 12 ±2 days).  The 

University of New Mexico’s Institutional Review Board approved this protocol and the 

subjects provided informed, written consent prior to participation.   

 
Preliminary Testing 
Body composition and cardiorespiratory fitness were assessed for all subjects. Three site 

skinfold (Lange, Beta Technology, Santa Cruz, CA) measurements (M: chest, abdomen, 

thigh; W: triceps, suprailiac, thigh) were used to determine percent body fat.  Each site 

was measured in triplicate and the mean value was used to calculate percent body fat.  A 

continuous graded treadmill test in a temperate room (22-24°C, 30% RH) was used to 
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determine VO2peak. VO2peak was assessed through open circuit spirometry (ParvoMedics, 

Sandy, UT) and defined as the highest 30 second value when 2 of the following criteria 

were met: 1) a plateau in VO2 (change in VO2 <150 ml min-1) with increased workload, 

2) a maximal respiratory exchange ratio greater than 1.1, and 3) heart rate greater than 

95% of the age predicted maximum (220-age). 

 
Experimental Design 
Each subject performed 2 exercise trials (treadmill running at 60% VO2peak) in the heat 

for 60 min.  Female subjects were counterbalanced so that 4 subjects performed the first 

exercise bout in the lut phase while 5 subjects performed the first exercise bout in the fol 

phase. Fol testing was done between days 5-9 and lut testing occurred between days 19-

21.  The onset of bleeding was considered day 1.  Plasma estrogen and progesterone 

values were obtained to corroborate the appropriate menstrual cycle phase (Genway 

Bioscience, San Diego, CA). 

 

Experimental Protocol 
All subjects were un-acclimated to the heat and data collection took place during the fall 

and winter months (October – February).  Subjects were instructed to avoid exercise and 

alcohol for 24 hrs and to avoid caffeine for 12 hrs prior to each exercise test.  Subjects 

were given a list of high carbohydrate foods to consume for dinner the night before the 

test and for breakfast on the morning of the test.  Subjects were asked to consume the 

same foods for the second trial. 
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On the day of the trial, nude body weight was recorded to the nearest 0.1kg (Seca Scale, 

Birmingham, UK) and urine osmolality was used to assess hydration levels (Advanced 

Osmometer, Model 303, Advanced Instruments Inc, Norwood, MA).  

Core temperature (Tcore) was measured by inserting a thermistor (YSI precision 4400 

Series, Yellow Springs Inc, Yellow Springs, OH) 10 cm past the anal sphincter. An 

intravenous catheter was inserted in an antecubital vein and kept patent by infusing 3 ml 

of isotonic saline every 15 min during and after the exercise bout.  Samples were drawn 

pre, immediately post, 1 hour post, and 4 hours post exercise. All blood was stored in 

EDTA treated tubes (Vacutainer, Franklin Lakes, NJ) for future analysis.  

 

The exercise intensity was set to elicit 60% of VO2peak. VO2 was measured every 15 min 

during exercise. The workload was adjusted during the first 15 min of trial 1 to ensure 

60% of VO2peak.  After the first 15 min, the workload did not change.  When subjects 

repeated the exercise trial, the intensity was identical to the first exercise trial.  During the 

first exercise trial, subjects were allowed to drink water ad libitum.  The subjects ingested 

the same volume of water during their second trial. 1 male and 1 female subject was 

unable to complete 60 min of exercise due to heat related issues.  When the trial was 

repeated, these subjects exercised for the same duration as in trial 1.  

 
Blood Analysis 
Hsp72 
Three ml of blood was drawn at each time point.  Half of the blood was aliquotted into 

EDTA treated tubes and used to measure hematocrit, Hsp72, estrogen, and progesterone. 

Hsp72 was quantified using flow cytometry.  Briefly, cells were separated from 1 ml of 

blood using density gradient centrifugation (15 min, 2100 RPM, 0 ACC) with 1.077 g/ml 
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Histopaque (Sigma-Aldrich, St. Louis, MO).  Peripheral blood mononucleated cells were 

washed with PBS and then treated with Reagent A (Fix and Perm kit, Invitrogen, 

Carlsbad, CA) and incubated at room temperature for 15 min.  Cells were then washed 

and treated with Reagent B (Fix and Perm kit, Invitrogen, Carlsbad, CA) combined with 

a monoclonal Hsp72 FITC antibody (Assay Designs, Ann Arbor, MI) at 100 µg/ml.  

Cells were incubated for 20 minutes in the dark at room temperature.  Cells were washed 

a final time, and then diluted in 300 µl sheath fluid and analyzed using a FACSCAN 

cytometer (BD Scientific, San Jose, CA).  Ten thousand events were collected.  Data was 

analyzed using Cellquest software (BD Scientific, San Jose, CA). The amount of protein 

produced per cell population was quantified as mean fluorescent intensity (MFI). To 

determine MFI, cells were gated and corrected for auto-fluorescence based upon 

unstained control.  The gating strategy is shown in figure 1 To serve as a positive control, 

1 ml of post exercise blood was placed in a 42°C water bath for 2 hours.  

 
Figure 1.  Gating strategy: SSC vs  FSC for PBMC. Expression of Hsp72 in unstained 
cells, pre exercise, and after 42ºC incubation. 

               

 
Cytokines 
For cytokine analyses, 1.5 ml of blood was treated with 4.5µg Brefeldin A (ebiosciences, 

San Diego, CA) then placed in EDTA treated tubes.  The same protocol was used to 
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quantify cytokine expression except that Reagent B (Fix and Perm kit, Invitrogen, 

Carlsbad, CA) was combined with an APC conjugated monoclonal antibody for TNF-α 

(concentration: 0.2 mg/ml), a FITC conjugated anti-human IL-1ra antibody (0.5 mg/ml), 

and a PE conjugated anti-human IL-6 antibody (0.2 mg/ml). To determine MFI, cells 

were gated and corrected for auto-fluorescence based upon unstained control. To serve as 

a positive control, 1 ml of post exercise blood was treated with 1µg of LPS. 

 

eHsp72 
Plasma was analyzed for extracelluar Hsp72.  Plasma was obtained after density gradient 

centrifugation using 1.077 g/ml Histopaque (Sigma-Aldrich, St. Louis, MO).  Plasma was 

immediately stored in -80°C until future analysis.  An Hsp72 ELISA kit (Assay Designs, 

Ann Arbor, MI) was prepared according to manufacturer’s instruction to quantify 

eHsp72.  Minimum detection of eHsp72 was 0.20 ng/mL with an inter-assay precision of 

12.8% and an intra-assay precision of 3.9%. Hematocrit was analyzed within 15 min of 

the blood draw and used to correct for plasma volume changes with exercise as outlined 

in Van Beaumont, 1972 (40). eHsp72 results are corrected for plasma volume changes 

from the exercise bout. 

 
Estrogen and Progesterone 
Plasma was analyzed for estrogen and progesterone using EIA kits (Genway Bioscience, 

San Diego, CA) according to manufacturer’s instruction. Minimum detectable 

concentration of estradiol was 5 ± 2 pg/mL and 0.08 ± 0.03 ng/mL for progesterone. 

Inter-assay variability was 6% for estradiol and 8.8% for progesterone.  Intra-assay 

variability was 4.6% for estradiol and 9.7% for progesterone. 
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Statistical Analysis 
To determine if Hsp72, eHsp72, or cytokines changed with exercise for a given 

condition, a 1 factor (time) ANOVA was used to analyze each condition independently.  

A total of 6 independent 1-way ANOVA’s were run.  The conditions were: trials 1 and 2 

for M (n = 9), trials 1 and 2 for W (n = 9), fol (n = 6), and lut (n = 6). 

 
To analyze if there was an order effect, we compared trial 1 vs. trial 2 for the M (n=9) 

and trial 1 vs. trial 2 for the W (n=9) using a 2 factor (time x trial) repeated measures 

ANOVA.   

 
To test for differences due to the menstrual cycle, a 2 factor (time x phase) repeated 

measures ANOVA was used.   Here we compared fol vs. lut data, n=6. 

 

To test for sex differences in Hsp72, eHsp72, and cytokines, a 2 factor (time x condition) 

ANOVA was used.   In this analysis, we compared each condition (M trial 1, M trial 2, W 

trial 1, W trial 2, fol, and lut) to all other conditions. 

 

Baseline Hsp72 MFI on trial 1 was compared to baseline Hsp72 on trial 2 using a paired 

t-test.  This was done to assess acquired cellular thermotolerance.  

 

Statistical analysis was performed by using SPSS version 16.  Statistical significance was 

set at α = 0.05.  If the sphericity assumption was violated, the Huynh–Feldt correction 

was applied to the degrees of freedom of the F ratio.  When appropriate, Tukey’s post 

hoc tests were performed. All data is expressed mean ± SD. 
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Results  

Subject characteristics.  M and W differed significantly for height (p = 0.01), weight (p = 

0.01), % body fat (p = 0.01), and aerobic capacity expressed as ml/kg/min (p = 0.03).  

However, when aerobic capacity was expressed relative to fat free mass, there was no 

difference between groups (Table 1). For M, trial 2 was repeated 12 ± 4 days after trial 1.  

For W, trial 2 was repeated 12 ± 2 days after trial 1. 

 

Table 1.  Descriptive Data (n=9 women, 9 men) (Mean ± SD). 
 Age (yr) Height (cm) Weight (kg) VO2peak 

(ml• kg-1 • 
min-1) 

VO2peak 
(ml.• kg-1 
FFM • min-

1) 

% Body 
Fat 

Men 26±5 182± 7∗ 81.0±15∗ 52.6±8∗ 60.0±7.7 12.0±5.5∗ 
Women 24±3 170±3 63.1±12 44.9±5 58.8±5.2 21.4±2.5 
∗ difference (p < 0.05) between groups. 
 

 

Exercise Response.  M and W did not differ in starting or ending Tcore, HR, pre or post 

urine osmolality, or relative exercise intensity.  However, M had significantly greater 

sweat rates than W (p =.01) (Table 2). 1 female subject experienced heat illness issues at 

45 min on trial 1, and 1 male subject was forced to stop exercising for similar reasons at 

30 min on trial 1.  The second bout for both subjects was identical in duration and 

intensity to the first bout.  All other subjects completed 60 min of exercise. 
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Table 2.  Thermal and cardiovascular responses to exercise (Mean ± SD). 
 Pre Tc 

(°C)  
End Tc 
(°C) 

Pre 
Urine 
Osm 
(mOsm/
kg)  

Post 
Urine 
Osm 
(mOsm/
kg)  

End 
HR  

End 
%VO2pk 
(ml/kg/
min)  

Sweat 
Rate 
(ml/min)  

Women 
Combined 

(n=9) 

37.25±.2 38.93±.5 459±333 407±255 161±12 59±4 15.6±7Ω 

Fol 
(n=6) 

37.19±.1 39.06±.5 394±346 351±245 161±11 59±5 16.2±5Ω 

Lut 
(n=6) 

37.34±.2 38.97±.4 516±287 464±235 162±10 60±3 15.0±8Ω 

Men        
Trial 1 
(n=9) 

37.04±.2 39.36±.3 532±298 520±266 162±17 57±4 29.1±11 

Trial 2 
(n=9) 

36.99±.3 39.26±.1 442±317 547±307 158±16 58±5 26.4±13 

Ωp< 0.05 from Men’s Trial 1 & 2 
 

Hormones during the Menstrual Phase. Three subjects were removed from only the 

menstrual cycle analyses after examining their estrogen and progesterone values.  In 

these subjects, estrogen and/or progesterone values were not higher in the lut compared to 

fol phase. Therefore, all menstrual phase analysis are shown with n = 6. Of the six 

subjects analyzed for menstrual phase differences, four completed their first exercise trial 

in the fol phase, and two subjects exercised in the lut phase first.  Estrogen and 

progesterone levels were significantly higher in the lut compared to fol phase (p = .01) 

(Tables 2 and 3).  There was no difference in starting or end of exercise Tcore, HR, or VO2 

between phases. 
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Table 3.  Sex hormones and menstrual cycle phase (n = 6) (Mean ± SD). 

*p< 0.05 from Lut; Ωp< 0.05 from Lut 
 
 

Effect of exercise on Hsp72 and cytokines.  During exercise, intracellular protein content 

of Hsp72 expressed as MFI increased in M trial 1 (p = 0.03) (Figure 2). Post hoc tests 

revealed a significant difference between baseline and 4 hrs post exercise (p = 0.05).  

Hsp72 did not increase in trial 2. M trial 1 and 2 showed a strong tendency towards 

statistical significance (p = 0.06) (Figure 2). Pre Hsp72 MFI for the M in trial 2 was 26% 

higher than pre trial 1 (p = 0.01) (Table 4).  

 

Figure 2.  Hsp72 Response to Exercise:  Men’s trial 1 and 2. 

 
 

 Estrogen 
(pg/ml) 

Progesterone 
(ng/ml) 

Ending 
HR 

% VO2max Pre Tc (°C)  End Tc (°C) 

Follicular  86±27* .85±.64Ω 160±16 57±5 37.19±.1 39.06±.5 
Luteal  159±56 5.5±2.9 165±15 59±3 37.34±.2 38.97±.4 
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For W, MFI of Hsp72 did not change in trial 1 or trial 2 (Figure 3). There was no 

difference between trial 1 and 2. Pre Hsp72 MFI for W trial 2 was not higher than pre 

trial 2 (Table 4).  

 

Figure 3.  Hsp72 Response to Exercise:  Women’s trial 1 and 2. 

 
Table 4.  Baseline Hsp72 content (MFI): Trial 1 vs Trial 2.  Mean ± SD. 
 Basal Hsp72 Content % Increase from Trial 1 
Men’s trial 1 108 ± 31  
Men’s trial 2 136 ± 49* 26% 
Women’s trial 1 121 ± 34  
Women’s trial 2 130 ± 58 7% 
*p< 0.05 from Men’s Trial 1. 
 

Hsp72 data was normalized to baseline to describe the percent increase observed with 

exercise.  Normalized Hsp72 increased in M trial 1 (p = 0.00).  Post hoc tests revealed 

significant increases from baseline after 1 (p = 0.00) and 4 hrs of exercise (p = 0.00).  

During M trial 2, normalized Hps72 did not increase significantly from baseline. M trial 1 

differed from M trial 2 (p = 0.00).  
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Normalized Hsp72 increased from baseline in W trial 1 (p = 0.02), however, none of the 

post hoc tests were significant.  In W trial 2, normalized Hsp72 did not increase from 

baseline. W trial 1 differed from W trial 2 (p = 0.00). 

 
Cytokines and eHsp72 did not change with exercise. 

 

Effect of sex on Hsp72 and cytokines. There was no difference between M and W trials, 

including menstrual phase, on Hsp72 expressed as MFI.  For normalized Hsp72, there 

was a main effect for condition (p = 0.00).  Post hoc test showed M trial 1 was 

significantly different than W trial 1 (p = 0.00), fol (p = 0.00), and lut (p = 0.00) (Figure 

4). M trial 2 was not different than W trial 2, fol, or lut. 

 

Figure 4.  Normalized change in Hsp72: Men vs Women – Trial 1.   

 

eHsp72 expressed a main effect for condition (p = 0.05).  Post hoc test showed M trial 1 

was higher than W trial 1 (p = 0.05) (Figure 5). 
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Figure 5. eHsp72 Sex Differences. Corrected for plasma volume change with exercise. 

 

There was a main effect for condition for IL-1ra (p = 0.03).  Post hoc test showed that M 

trial 2 (p = 0.03) was significantly higher than fol.  There was no difference between M 

and W trial 1 and M and W trial 2 (Figure 6). 

 

Figure 6.  IL-1ra: Sex Differences. 

 

There was no main effect for condition for TNF- α or IL-6. 
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Effect of menstrual phase on Hsp72 and cytokines. Hsp72 MFI did not change during 

exercise in the fol or lut phase and the response was similar in both fol and lut phases. 

Normalized Hsp72 was not different when exercise was done in the fol compared to lut 

phase.  Normalized Hsp72 did not change from baseline during exercise in fol or lut 

phase. eHsp72 expression did not change with exercise in the lut or fol phase, and there 

was no differences in eHsp72 expression between menstrual cycle phases. 

IL-1ra did not change during exercise in the fol or lut phase and the response was similar 

in both fol and lut phases. 

W expressed higher IL-6 in the fol compared to lut phase (p = 0.03) (Figure 7). Paired t 

test revealed a significant increase in fol at 4 hrs post exercise (p = 0.04). Exercise in the 

fol phase and lut phase did not change IL-6. 

 

Figure 7.  IL-6 Menstrual Phase.   
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W expressed higher TNF- α in the fol compared to lut phase (p = 0.01) (Figure 8). Paired 

t test revealed a significant increase in fol at 4 hrs post exercise (p = 0.03). Exercise in the 

fol phase and lut phase did not change TNF- α. 

 

Figure 8. TNF-α Menstrual Phase. 

 
Discussion 
 
Our major finding is that W did not increase Hsp72 in response to exercise in the heat, 

nor was baseline Hsp72 increased after trial 1(Figure 3). M expressed a greater cellular 

stress response to exercise in the heat than W.  This is evident by the fact that M 

expressed greater Hsp72 than W. Furthermore, baseline Hsp72 content was up-regulated 

by 26% from trial 1 to trial 2 in M (Table 4).  This increase in baseline Hsp72 led to a 

significant fall in post exercise Hsp72 when the trial was repeated after ~12 days (Figure 

2). Thus, for a given level of stress, women had a lower cellular stress response than men.  

These sex differences may highlight the pleiotropic effects of estrogen in mediating the 

stress response to exercise in the heat. 
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Hsp72 
Hsp72 expression plays a significant role in maintaining cellular homeostasis during and 

after stress (13, 42). While there have been numerous animal studies that have shown sex 

differences in Hsp72 expression with hyperthermia, to our knowledge ours is the first 

study to examine this effect in humans. Results from animal studies imply that estrogen is 

responsible for increased baseline Hsp72 expression (3, 10, 41) and this up-regulation 

exerts protective effects that limit Hsp72 production during stress (22, 28, 29, 36). In our 

study in humans, baseline Hsp72 did not differ between sexes (Table 4).  M expressed 

increased Hsp72 4 hrs post exercise (Figure 2) and this is consistent with previous 

findings (4, 9, 11, 26, 33) that have shown increased Hsp72 content within 4 hrs after a 

stressor.  In contrast, W did not increase Hsp72  (Figure 3). Further, M had higher 

normalized Hsp72 compared to W in trial 1 (Figure 4). Thus, while it is understood that 

M increase Hsp72 in response to stress, we report for the first time that W do not.  The 

lack of increase in Hsp72 could potentially demonstrate increased protection from 

exercise in the heat exerted by estrogen, thereby inhibiting the need for additional Hsp72. 

 

Acquired cellular thermotolerance occurs when a single exposure to a severe, but sub-

lethal heat stress leads to protection against future, more severe heat exposure. This 

process involves the increased expression of basal Hsp72 (19, 20) and leads to decreased 

Hsp72 induction in response to a second exposure to heat (30). In this fashion, Hsp72 can 

act as a marker for thermal history (33).  Our data showed a 26% increase in baseline 

Hsp72 content in M, but not in W (Table 4). Thus, it appears that Hsp72 is regulated 

differently after an acute bout of exercise in the heat in un- heat acclimated M and W. To 
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our knowledge, it has not been previously appreciated that baseline Hsp72 could be up-

regulated for 12 days after a single acute bout of exercise in the heat.    

 

This paper also is the first to examine possible effects of the menstrual cycle on Hsp72 

expression.  If estrogen is responsible for the decreased Hsp72 induction during exercise, 

then the variation of estrogen across the menstrual cycle could alter baseline or stress 

induced Hsp72 expression.  The mechanism behind the relationship between estrogen and 

the blunted intracellular Hsp70 response to stress is currently not known. It was 

suggested that estrogen mediates this effect through a nongenomic hormonal 

pathway.  Treating animals with tamoxifen, a known estrogen receptor agonist, caused 

the same blunted post exercise Hsp70 expression as in ovariectomized animals treated 

with 17β and 17α estradiol (28).  Since tamoxifen, 17β, and 17α estradiol all suppress 

the post exercise expression of Hsp70, researchers suggest that these estrogen related 

compounds stabilize cell membranes and attenuate oxidative stress (44). Such an effect 

could protect thermal sensitive cells against exercise-induced damage, and thereby result 

in a blunted Hsp72 expression. 

 

However, we found no difference in baseline or post-exercise Hsp72 content when W 

exercised in the fol compared to the lut phase. Thus, while these unacclimated W did not 

increase Hsp72 in response to exercise in the heat, and this inhibition has been theorized 

to be mediated by estrogen (3, 28, 29, 36), the physiologic variations in estrogen and 

progesterone in these women during the menstrual cycle may not be sufficient to alter 

Hsp72 expression.   
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Cytokines 
Exercise results in a rise in extracellular pro- and anti-inflammatory cytokines. It is 

known, however, that PBMC are not the main origin of circulating cytokines (18, 27, 31, 

37, 38).  Despite this, recent studies have demonstrated robust changes in cytokine gene 

expression in PBMC after exercise (6, 16, 15, 30). Furthermore, inflammatory gene 

expression is menstrual phase dependent (25). Therefore, we sought to determine if M 

and W differed in the intracellular inflammatory response to stress.  Hsp72 has been 

shown to abrogate pro-inflammatory cytokine synthesis (TNF-α, IL-1), but has little 

effect on IL-6 (8). While we found no change in cytokine expression with exercise in the 

heat, cytokines were affected by menstrual phase and sex.  

 
Our results demonstrate a menstrual phase effect on IL-6 as W expressed higher IL-6 

after exercise in the follicular phase (Figure 7).  This result is consistent with previous 

work in which W who exercised in the fol phase up-regulated IL-6 mRNA in PBMC, but 

with exercise in the lut phase, IL-6 mRNA was down-regulated (25). The change in IL-6 

values between menstrual phases may be due to altered carbohydrate (CHO) oxidation 

rates.  Zderic et al found that whole body CHO oxidation during cycling at 70-90% of 

lactic threshold for 50 min is higher in the fol phase (46).  This higher rate of CHO 

oxidation could have lead to a greater use of CHO.  In response to low CHO availability, 

IL-6 production will increase (18).  

 
 
IL-1ra is a cytokine that exerts anti-inflammatory effects through binding to the IL-1 

receptor thus inhibiting the biological activities of IL-1α and IL-1β. Circulating IL-6 can 
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trigger the release of IL-1ra (39).  Unlike IL-6, which is released from the skeletal muscle 

with exercise (27), IL-1ra is released from PBMC’s (27). It appears that the increase in 

post exercise IL-1ra mRNA and protein plays a vital, paradoxical role to limit the effects 

of inflammation seen with exercise.  However, we found that intracellular IL-1ra in 

PBMC did not change with exercise. One reason for the lack of IL-1ra production in our 

study could be due to hyperthermia.  Previous work has shown that stress hormones limit 

the intracellular cytokine production from monocytes (31).  With exercise in the heat, 

stress hormones are elevated (12) and could thus limit IL-1ra production.  Our results are 

consistent with Selkirk et al who found that classic monocyte’s (CD14++CD16-) 

intracellular IL-1ra MFI was unchanged in response to walking in the heat until 

exhaustion (34).   

 

Contrary to our results, Northoff et al reported an increased IL-1ra mRNA synthesis after 

exercise in the fol compared to lut phase (25).  Further, PBMC have been shown to 

release less (21) or the same amount (43) of IL-1ra during the lut compared to the fol 

phase.  Our results suggest IL-1ra does not change across the menstrual cycle, but that M 

have higher IL-1ra than W in the fol, but not the lut phase (Figure 6).  

 
Similar to IL-6, it appears that circulating immune cells are not responsible for the 

increased serum TNF-α which accompanies strenuous exercise (37).  Our data support 

this theory, as there was no increase in intracellular TNF-α after exercise in PBMCs.  

Hsp72 has been shown to inhibit TNF-α through the NF-κB pathway (5, 45). Despite the 

smaller increase in Hsp72, M and W expressed similar amounts TNF-α. However, W had 

higher TNF-α in the fol compared to lut phase (Figure 8). Previously, it was found that 
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progesterone plays a role in inhibiting TNF-α mRNA and protein in macrophages (23).  

This decrease in TNF-α occurred through progesterone’s ability to inhibit the Nf-Kb 

pathway.  Progesterone was significantly higher in the lut phase (Table 3) and potentially 

limited TNF-α production. In addition, this highlights a different mechanism of TNF-α 

regulation that could account for similar TNF-α values between M and W, despite 

differences in Hsp72 expression. 

 
eHsp 
Another novel finding in this study was that the eHsp72 response was different between 

M and W in trial 1 (Figure 5). eHsp72 values in W were almost half of M’s values.  

Unlike intracellular Hsp72 that has been shown to down-regulate inflammatory 

cytokines, eHsp72 stimulates pro-inflammatory cytokine release from monocytes (2). 

eHsp72 has been linked to LPS tolerance (1) and may serves as a marker for heat illness 

(32).   

 
The release of eHsp72 is through an α1 adrenergic pathway (17). Epinephrine release in 

response to submaximal exercise is greater in males compared to mid-fol females (7, 14).  

Epinephrine was not measured in the current study, yet this could be a plausible 

explanation for the greater eHSP in M than F.  Future studies should address the different 

eHsp72 response between M and W.   

 
Conclusions 
We found that un-acclimated M and W differ in the amount of Hsp72 expressed in 

PBMC in response to exercise in the heat.  M increased Hsp72 after 1 bout of exercise in 

the heat, while W did not. For M, one bout of exercise in the heat increased basal Hsp72 

content, suggesting acquired cellular thermal tolerance. W did not demonstrate this 
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response.  During trial 1, eHsp72 was higher in M. Despite these sex related differences 

in Hsp72 expression, M and W do no differ in their ability to tolerate or acclimate to heat.  

Thus, estrogen could provide cellular protection and thus decrease the need for Hsp72.  

Though cytokines did not change with exercise, IL-6 and TNF-α were menstrual phase 

dependent, while IL-1ra regulation could be dependent on sex. 
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Chapter IV 

Summary, Conclusions, and Recommendations 

Summary:  Hypotheses 
 

1. Women will have higher basal levels of intracellular Hsp72 than men.   

Our results showed that baseline Hsp72 in PBMC did not differ between 

sexes.  Future research should examine Hsp72 content in tissues to determine 

baseline sex differences. 

 

2. In response to a severe exercise stress (60 minutes of treadmill exercise at 

60% VO2peak in the heat), men will express greater amounts of Hsp72.   

Our data supports this hypothesis as men increased Hsp72 expression (MFI) 4 

hrs post exercise, while women did not increase Hsp72.  Furthermore, 

normalized Hsp72 was significantly higher in men than women. 

 

3. Intracellular Hsp72 levels will be higher at baseline in women during the 

luteal phase of their menstrual cycles, but in response to severe exercise the 

expression of Hsp72 will be blunted in luteal compared to the follicular phase. 

Neither baseline nor post exercise Hsp72 levels were altered by menstrual 

phase.  Our results are supported by animal research (Nickerson 2006) that 

showed no change in Hsp72 content after tail shock between phases of the 

menstrual cycle.  Thus, while it appears that estrogen is responsible for the 

inhibition of Hsp72 after a stress, physiologic changes across the menstrual 

cycle do not alter baseline or post stress Hsp72 expression. 
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4. Pro-inflammatory cytokines (TNF-α) will be reduced in conditions where 

intracellular Hsp72 is elevated.   

Intracellular cytokines did not change in response to the exercise stress.  

Catecholamine release is greater with exercise in the heat, and increase 

catecholamines have been shown to inhibit pro-inflammatory in PBMC 

(Rhind 2004).  However, IL-1ra was higher in men compared to follicular 

phase women.  In addition, both TNF-α and IL-6 were higher in the follicular 

compared to luteal phase. 

 

5. There will be no difference between groups in eHsp72. eHsp72 is released 

with exercise, but this process does not appear to be mediated by estrogen.   

eHsp72 was significantly higher in males compared to females in trial 1. The 

release of eHsp72 is through an α1 adrenergic pathway (Johnson 2005), and 

epinephrine release in response to submaximal exercise is greater in men 

(Davis 2000).  Thus, the greater epinephrine release in men could potentially 

explain the increased eHsp72 release in men compared to women. 

 

 
Limitations 

In this study Hsp72 was only assessed in PBMC’s and not in tissues as in most of the 

animal studies.  However, previous work in humans showed no difference between M 

and W after 6 weeks aerobic conditioning in Hsp70 expression in the vastus lateralis 

(Morton 2009).  Unfortunately, baseline Hsp70 expression was not reported in this study. 
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One potential reason for a blunted increase in Hsp72 in W may have been due to their 

lower Tcore response during exercise.  Although not statistically significant, W were ~ 

0.3°C cooler at the end of 60 min of exercise than M. This is most likely due to issues 

with the rectal probe not reading appropriately or not being inserted to the proper depth.  

Despite this difference, the M and W had similar cardiovascular and metabolic exercise 

responses (Table 2). Previous work has shown that other factors such as oxidative stress 

(Adrie 2000), energy depletion (Sciandra 1983), disruptions in calcium homeostasis 

(Kiang 1994), and ischemia reperfusion injuries (Marber 1995) increase Hsp72. Finally, 

all menstrual phase analyses were conducted with an n of 6.  Therefore, it is plausible that 

with a larger samples size and thus more power, changes in Hsp72 or cytokine expression 

may emerge. 

 

Conclusions and Applications 

Our data demonstrates that in response to exercise in the heat, men express more Hsp72 

than women.  Also, men had higher eHsp72 values than women. Despite these sex related 

differences in Hsp72 expression, men and women do no differ in their ability to tolerate 

or acclimate to heat.  Thus, estrogen could provide cellular protection and thus decrease 

the need for Hsp72, highlighting a novel role of estrogen in conferring cellular 

thermotolerance. Though cytokines did not change with exercise, IL-6 and TNF-α were 

menstrual phase dependent, while IL-1ra regulation could be dependent on sex. 
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Recommendations 

Future research should examine sex differences in Hsp72 after repeated bouts of exercise 

or during a heat acclimation process. Our data suggests that women are protected from 

stressful stimuli without the need for additional Hsp72.  It is our contention that estrogen 

is mediating this protection.  Therefore, studying the Hsp72 responses to exercise after 

pharmaceutically inhibiting estrogen and progesterone release could reveal important 

insights into cellular thermotolerance.  Finally, it would be interesting to compare post-

menopausal women to regularly menstruating women to determine the effect of age and 

estrogen on Hsp72 expression. 

. 

 
Detailed Flow Cytometry Protocol 

 
1. Blood that will be tested for cytokines must be treated with Brefeldin A (golgi 

transport inhibitor).  Add 3 µl of BFA/1 ml of blood. Thus, add 3 µl directly to EDTA 

treated tubes for each ml of blood.  From the beginning, you have to alliquot blood for 

Hsp and blood for cytokines. 

 
2. I separate the blood using Histopaque (1.077 Sigma-Aldrich), however there is a red 

cell lysis that you can add directly to whole blood that is quicker and does not require 

histopaque.   

 
3. If using histopaque, spin 2100 RPM, 15 min, 0 ACC. 
 
4. Remove plasma and store for extracellular proteins of interest. 
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5.  Remove buffy coat and place in a new 15 ml conical tube.  Wash in 8 ml of cold PBS 

(1300 RPM, 7 min, 6 ACC).  Set aside 1 sample to use as the blank (unstained) control.   

 
6. Remover supernatant. 
 
7. Add 75 µl reagent A  (from fix and perm kit - Invitrogen) to pellet to fix cells. Re-

suspend pellet and incubate 15 min at room temp.  Don’t add reagent A to the blank 

sample.  Simply remove the supernatant and place in fridge until flow analysis. 

 
8. Wash in 3 ml wash buffer (PBS, 10% FBS, and 1% NaN3). Spin 1200 RPM, 5 min, 6 

ACC. 

 
9. Remove supernatant. 
 
10. Alliquot 75 µl reagent B (from fix & perm kit - Invitrogen) along with appropriate 

amount of Hsp72 Ab (3 µl/ 106 cells – Hsp72 FITC – Assay Designs).  Re-suspend pellet 

and incubate in the dark 20 min. 

 
Do the same for cytokines.  75 ul of reagent B mixed with appropriate volumes of IL-1ra 

(1 µl/106 cells - eBioscience), IL-6 (2 µl/106 cells – eBioscience), and TNF-α (1 µl/106 

cells – eBioscience) antibody.  All antibodies are added to each sample. Re-suspend and 

incubate in the dark for 20 min. 

 
For isotype controls, each pellet can only be treated with one Ab.  Thus, you need 4 

different samples (one for Hsp72 isotype control, 1 for TNF isotype control, 1 for IL-6 

isotype control, and one for IL-1ra isotype control).  The isotype controls are added with 

the same concentration as the corresponding Hsp72/cytokine antibody. Re-suspend and 

incubate in the dark for 20 min. 
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11. Wash 3 ml wash buffer. 
 
12. Remover supernatant. 
 
13.  Re-suspend in 500 ml Sheath fluid. 
 
14.  Measure on Flow Cytometer. 
 
15.  To quantify MFI, gate on blank or isotype control.  Use “median” statistic to quantify 

intracellular protein content. Subtract blank MFI (for auto-flouresence) from median MFI 

value. 
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The University of New Mexico Health Sciences Center 
Consent to Participate in Research 

 
 

Gender difference in heat shock protein expression in response to acute exercise in the 
heat 

 
Introduction 
 
You are being asked to participate in a research study that is being done by Dr. 
Schneider, PhD, who is the Principal Investigator and her associates. from the 
Department of Health, Exercise, and Sports Science.  This research is studying the effect 
of gender on heat shock protein expression in response to exercise in the heat. 
 
Heat shock proteins (HSP) are a family of proteins that serve to protect the cell.  HSP can 
be found in all cells of the body.  The activities of HSP are vital for cells to resist 
environmental stressors like heat. Because of the protective nature of HSP, recent 
research has implicated HSP in preventing damage to the heart. 
  
You are being asked to participate in this study because HSP can increase protection from 
stressors like exercise and heat, but animal studies suggest women produce less HSP in 
response to stress than men.  Therefore, if we can understand the reason behind this 
response, it could potentially lead to better cell protection.  24 people (8 men and 16 
women) will take part in this study at the University of New Mexico.     
 
This form will explain the research study, and will also explain the possible risks as well 
as the possible benefits to you.  We encourage you to talk with your family and friends 
before you decide to take part in this research study.  If you have any questions, please 
ask one of the study investigators.     
 
What will happen if I decide to participate?  
 
If you agree to participate, the following things will happen: 
 

Your cardiovascular fitness will be assessed through a preliminary exercise trial (VO2 
max test) where you will run on a treadmill while breathing into a mouthpiece.  
Specifically, you will run until you become too tired to continue. During the test, we will 
collect your expired air which allows us to calculate the amount of oxygen your body is 
consuming. To collect your expired air, you will breathe through a sterile, rubber 
mouthpiece and wear a nose-clip. This may cause you to experience some discomfort 
(dry mouth) and you may feel confined. A heart rate monitor will be used to measure 
your heart rate.  This test will be done in a comfortable environment.  You should have at 
least an average value of aerobic fitness for your age and gender to qualify for this study.  
We will calculate your fitness based upon the amount of oxygen you breath in during the 
test. 
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Your body composition will be assessed through hydrostatic weighing and skin fold 
measurement.  During hydrostatic weighing, we will weigh you on a normal scale, and 
then also weigh you underwater.  
 
We will take 3 skin fold measurements on  your body: One on your upper arm, one by 
your belly button, and one on your thigh.  During the skin fold measurement, you will 
feel a slight pinch for 1-2 seconds. 
 
These measurements allow us to determine your body density, which we can use to find 
your % body fat.  Your percent body fat is the amount of fat that makes up your total 
body weight.  
 
Female subjects will exercise in both phases of the menstrual cycle.  In the follicular 
phase (before ovulation), estrogen is low.  In the luteal phase (after ovulation), estrogen 
and progesterone are high.  Thus, by exercising in both phases of the cycle then we can 
see what effect estrogen has on HSP.  To determine the phase of the menstrual cycle, 
females subjects will keep a record of the number of days of each menstrual cycle.  The 
start of bleeding is considered day one of the menstrual cycle.  The exercise test for the 
follicular phase will occur between days 2-4 of the menstrual cycle.  The exercise test in 
the Luteal phase will occur between days 22-25 of the menstrual cycle.  To help 
determine when ovulation occurs, female subjects will record their oral temperature each 
day before getting out of bed. Males and females will be tested twice over the course of 4 
weeks.  
 
Females will not be involved in this study if they are using any form of hormonal 
contraceptives, or have used them within the past three months. Also, females will not be 
allowed to participate in this study if they are pregnant.  Prior to each exercise trial, 
female subjects will be given a pregnancy test.  This involves subjects urinating on a 
pregnancy detection kit.  If the subject is pregnant, they will not be exercised and will not 
participate in this study.   
 
If you meet the criteria to be included in this study based upon the above assessments, 
then the study will require you walk or jog in a hot (100° F, 37.78°C) environment until 
you reach a temperature of 39.0 C (102.2° F).  This should take 45-60 minutes.  During 
the exercise test we will measure: 
 
-Core body temperature.  This requires that you insert a small, sterile, rubber catheter 4 
inches into your rectum.   
 
-Heart rate.  We will use a telemetric heart watch monitor which consists of a transmitter 
belt worn around the chest and a receiver watch worn on your wrist. 
 



www.manaraa.com

 

 
  Version: 08/03/2009 

 
     

 

 

84 

-Urine samples.  One tablespoon of urine will be required prior to the exercise challenge 
to check your hydration status.  These samples will be coded, analyzed, and properly 
disposed on the same day. 
 
Skin Temperature.  We will place a flat thermometer on your upper right arm, chest, right 
thigh, and right calf to measure how hot your skin gets.  They will be placed on top of 
your skin and be held there with plastic. 
            
  
-Blood samples.  Twenty milliliters (approximately 1.35 tablespoons) of blood will be 
drawn with a needle from an arm vein before, immediately after exercise, and 1, 4 and 24 
hours after exercise.  Each visit 7 tablespoons, or 100 ml of blood will be drawn. The 
total experiment will require about ¾ of a cup, or 200 ml of blood. This will require a 
catheter to be placed in your arm so we only have to insert the needle once per exercise 
session.  Every 15 minutes during exercise, we will prick your finger to get one drop of 
blood.  This will measure lactate and tell us how intensely you are exercising.  This will 
occur 3 times for each exercise trial. 
 
 
How long will I be in this study? 
 
Participation in this study will take a total of 10 hours over a period of two 24 hour 
periods.   
 
What are the risks or side effects of being in this study? 
 
Every reasonable precaution will be taken to minimize risks during this study. As in any 
testing situation, there are risks involved. Some of these risks include muscle soreness or 
injury, heart attack (1 in every 10,000 exercise tests) or other heart events during the 
exercise trials.  The risk for healthy young people during exercise testing is much lower. 
There may be some discomfort and feeling of confinement from the use of the 
mouthpiece and nose clip.  
 
• During the cardiovascular fitness test you may experience a strong sense of fatigue, 

fainting, breathlessness, psychological stress (i.e., panic).  There may be some 
discomfort and feeling of confinement from the use of the mouthpiece and nose clip. 
During the exercise trials in the hot room, you may feel hot, sweaty, and tired. 
 

• Blood samples will be drawn from an arm vein (1 baseline blood sample, and a total 
of 4 samples after the exercise).  Blood sampling may cause minor pain and 
discomfort from the needlestick and there is a slight risk of bruising or infection at the 
site of sampling.  Sterile equipment and standard procedures done by experienced 
staff will be used to minimize these risks. 
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• Insertion of the rectal probe may lead to additional discomfort or feelings of 
awkwardness during the exercise trail.  You, the subject, will insert the probe. 

 
• There are risks of stress, emotional distress, inconvenience and possible loss of 

privacy and confidentiality associated with participating in a research study. 
 

There may be unforeseeable risks to subject or unforeseeable risks to embyro if 
subject is pregnant or becomes pregnant before the end of the exercise testing.   
 
For more information about risks and side effects, ask your study doctor.   
 
 
 
 
What are the benefits to being in this study? 
 
There are no direct benefits to you for participation in this study. 
 
Your participation in this study will help us to determine if a gender difference in heat 
shock protein is present in humans.  Potential results from this study could lead to 
methods for increasing protection for women against cardiovascular disease and certain 
types of tumors. 
 
 
What other choices do I have if I do not want to be in this study? 
 
The only alternative is not participating in this study. 
 
How will my information be kept confidential? 
 
We will take measures to protect your privacy and the security of all your personal 
information, but we cannot guarantee confidentiality of all study data. You will be given 
a coded number to protect your identity.  We will keep a link between your code and your 
name. A link will be kept for the duration of the study and will be stored in a separate file 
away from the data.  This code is stored in a locked file cabinet in the investigator’s 
office.  The link will be destroyed at the end of data analysis. 
 
Information contained in your study records is used by study staff.  The University of 
New Mexico Health Sciences Center Human Research Review Committee (HRRC) that 
oversees human subject research will be permitted to access your records.  There may be 
times when we are required by law to share your information.  However, your name will 
not be used in any published reports about this study. A copy of this consent form will be 
kept in your medical record. 
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What are the costs of taking part in this study? 
 
There is no cost to you for taking part in this study.   
 
 
What will happen if I am injured or become sick because I took part in this study? 
 
No commitment is made by the University of New Mexico Health Sciences Center 
(UNMHSC) to provide free medical care or money for injuries to participants in this 
study.  If you are injured or become sick as a result of this study, UNMHSC will provide 
you with emergency treatment, at your cost.  It is important for you to tell your study 
doctor immediately if you have been injured or become sick because of taking part in this 
study.  If you have any questions about these issues, or believe that you have been treated 
carelessly in the study, please contact the Human Research Review Committee (HRRC) 
at the University of New Mexico Health Sciences Center, Albuquerque, New Mexico 
87131, (505) 272-1129 for more information.   
 
Will I be paid for taking part in this study? 
 
No.  There is no form of compensation for participating in this study. 
 
 
How will I know if you learn something new that may change my mind about 
participating? 
 
You will be informed of any significant new findings that become available during the 
course of the study, such as changes in the risks or benefits resulting from participating in 
the research or new alternatives to participation that might change your mind about 
participating.   
 
Can I stop being in the study once I begin? 
 
Your participation in this study is completely voluntary.  You have the right to choose not 
to participate or to withdraw your participation at any point in this study without affecting 
your future health care or other services to which you are entitled.   
 
If you choose to withdraw from the study, please contact Trevor Gillum at (580) 380-
1486 or tgillum@unm.edu.  Subjects will be removed from the study they fail to comply 
with the standard, high carbohydrate diet, start taking vitamin supplements, or in the case 
of women, do not maintain a normal menstrual cycle. 
 
Whom can I call with questions or complaints about this study? 
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If you have any questions, concerns or complaints at any time about the research study, 
Dr. Schneider, PhD, or her associates will be glad to answer them at (505) 277-3795, 
Monday through Friday 8:00-5:00.  If you need to contact someone after business hours 
or on weekends, please call (580) 380 1486 and ask for Trevor Gillum. If you would like 
to speak with someone other than the research team, you may call the UNMHSC HRRC 
at (505) 272-1129.   
 
 
   
Whom can I call with questions about my rights as a research subject? 
 
If you have questions regarding your rights as a research subject, you may call the 
UNMHSC HRRC at (505) 272-1129.  The HRRC is a group of people from UNM and 
the community who provide independent oversight of safety and ethical issues related to 
research involving human subjects.  For more information, you may also access the 
HRRC website at http://hsc.unm.edu/som/research/hrrc/. 
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CONSENT 
You are making a decision whether to participate in this study.  Your signature below 
indicates that you read the information provided (or the information was read to you).  By 
signing this consent form, you are not waiving any of your legal rights as a research 
subject. 
 
I have had an opportunity to ask questions and all questions have been answered to my 
satisfaction.  By signing this consent form, I agree to participate in this study.  A copy of 
this consent form will be provided to you. 
 
____________________________     ____________________________            
___________  
Name of Adult Subject (print)   Signature of Adult Subject            
Date 
 
. 
 
________________________    
INVESTIGATOR SIGNATURE 
I have explained the research to the subject or his/her legal representative and answered 
all of his/her questions. I believe that he/she understands the information described in this 
consent form and freely consents to participate. 
 
_________________________________________________ 
Name of Investigator/ Research Team Member (type or print) 
 
_________________________________________________            
___________________ 
(Signature of Investigator/ Research Team Member)                        Date 
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HEALTH HISTORY AND PHYSICAL ACTIVITY QUESTIONNAIRE  

 
Name  ___________________________________ D.O.B ___/___/___     
Date___/___/___ 
 
Age____   Height ______ Weight _______ Gender____   
Ethnicity_______    
 
Sitting blood pressure _______________  
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦ 

MEDICAL HISTORY 
 
Physical 
injuries:_________________________________________________________________
_____ 

Limitations______________________________________________________________
_____________ 

Have you ever had any of the following problems?  Please check all that apply. 

 Heart attack/Myocardial Infarction____ Heart surgery ____ Valve 
problems _____  
 Chest pain or pressure                    ____ Swollen ankles ____ Dizziness _____ 
 Arrhythmias/Palpitations ____ Heart murmur ____ Shortness 
of breath _____  Congestive heart failure ____ Heat illness ____ Blackouts _____ 
 Blurred Vision ____ Abnormal anxiety ____ Palpitations _____ 
 Tingling/numbness in extremities  ____ Leg cramps  ____
 Gastrointestinal Ulcers _____ 
   
Have you ever had any of the following?  Please check all that apply. 
 Hepatitis/HIV _____ Depression _____ Cancer (specify type) __________ 
 Rheumatic fever _____ High blood pressure_____  Thyroid problems _____ 
 Kidney/liver disease _____ Obesity _____  Total cholesterol 
>200 mg/dl _____ 
 Diabetes (specify type) _____ Asthma _____  HDL cholesterol <35 
mg/dl _____ 
 Emphysema _____ Stroke _____  LDL cholesterol >135 
mg/dl _____ 
     Trigylcerides>150 
mg/dl _____ 
 
Do immediate blood relatives (biological parents & siblings only) have any of the 
conditions listed above?  If yes, list the problem, and family member age at diagnosis. 
________________________________________________________________________
_______________ 
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Is your mother living?   Y   N  Age at death______ Cause___________________ 
Is your father living?    Y   N  Age at death______ Cause___________________ 
 
Do you currently have any condition not listed that may influence test results?  Y       N 

Details__________________________________________________________________
______________ 

________________________________________________________________________
______________ 

Indicate level of your overall health.  Excellent ____  Good ____   Fair ____  Poor____ 

Are you taking any medications, vitamins or dietary supplements now?         Y      N 

If yes, what are 
they?___________________________________________________________________
_ 

Do you have allergies to any medications?  If yes, what are they?  
________________________________ 

Are you allergic to latex? Y N 

Have you been seen by a health care provider in the past year?   Y       N 

If yes, elaborate 
_______________________________________________________________________ 

Have you had a prior exercise test?    Y      N       If yes, when?______________  What 
were the results? 

________________________________________________________________________
____________ 

Have you ever experienced any adverse effects during or after exercise (fainting, 
vomiting, shock, palpitations, hyperventilation)?  Y  N  If yes, 
elaborate.________________________________________ 

________________________________________________________________________
____________ 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦ 

LIFESTYLE FACTORS 
Do you now or have you ever used tobacco?     Y    N     If yes:  type ________________   

How long?___________                  Quantity____/day    Years since 
quitting______________ 

How often do you drink the following? 

  Caffeinated coffee, tea, or soda  _______oz/day Hard liquor _______oz/wk      Wine 
_______oz/week 

  Beer  _______oz/wk 
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Indicate your current level of emotional stress.  High____    Moderate ____    Low____    
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦ 

PHYSICAL ACTIVITY/EXERCISE 

Physical Activity 
 Minutes/Day  (Weekdays) Minutes/Day  (Weekends)   

 ______/______ average  ______/_____  average 

 Do you train in any activity (eg. jogging, cycling, swimming, weight-lifting)?         Y           
N 

 How well trained are you? _____________________________________________________________ 

Vigorous Exercise (>30 Minute sessions) 
 _________Minutes/hours a week 

How many days/wk do you exercise or do vigorous work outside?  _______ average 
days/wk 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦ 

WOMEN ONLY 
Please check the response that most closely describes your menstrual status: 
_____ Post-menopausal (surgical or absence of normal menstrual periods for 12 months) 

_____ Eumenorrheic – Normal menstrual periods (~every 28 days) 

_____ Amenorrheic – Absence of normal menstrual periods for at least 3 months 

_____ Oligomenorrheic – Irregular menstrual periods with occasional missed cycles. 

Measured Height (cm) _________________                       Weight (kg)_______________                              
BMI (kg/m2) ____________ 

Blood Pressure (mmHg) _______/_______ 

 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦ 

Positive cardiovascular risk factors include: 

1.  Family history: Myocardial infarction, coronary revascularization or sudden death before 
55 years in father or first degree male relative or before 65 in mother or first degree female 
relative. 

2.  Current cigarette smoker or quit within the previous 6 months. 

3.  Hypertension: systolic blood pressure greater or equal to 140 mmHg or diastolic pressure 
greater or equal to 90 mmHg, or on antihypertensive medication. 

6.  BMI>30 kg/m2  
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7.  Sedentary lifestyle: persons not participating in a regular exercise program or not 
meeting the minimal physical activity recommendations for the US Surgeon General's 
Report.  

If subjects have two or more cardiovascular risk factors as outlined above, then will be 
excluded from the study.  Furthermore, subjects need to fall within the following criteria to 
be included: 

-Healthy, between the ages of 18 and 34 years*  

-VO2max > 30 for women and > 35ml/kg FFM/min for men, as determined in our lab using a 
graded, cycle protocol. 

-Moderately active lifestyle (exercise vigorously at least 30 min, 3 times a week)  

- Not pregnant or not trying to become pregnant 
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